Abstract

We experimentally demonstrate cavity linewidth control by manipulating dispersion of the intracavity medium. By making use of the dramatic change of Kerr nonlinearity near electromagnetically induced transparency resonance in a three-level atomic system, the cavity transmission linewidth can be greatly modified. As the cavity input intensity increases, the cavity linewidth changes from below to above empty cavity linewidth, corresponding to subluminal and superluminal photon propagation in the cavity, respectively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Davis, Laser and Electro-Optics (Cambridge U. Press, 1996), pp. 68.
  2. R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. 68, 1132 (1992).
    [CrossRef] [PubMed]
  3. H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, Phys. Rev. A 40, 5516 (1989).
    [CrossRef] [PubMed]
  4. H. Wang, D. Goorskey, W. H. Burkett, and M. Xiao, Opt. Lett. 25, 1732 (2000).
    [CrossRef]
  5. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
    [CrossRef] [PubMed]
  6. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
    [CrossRef]
  7. W. R. Boyd and J. D. Gauthier, Prog. Opt. 43, 497 (2002).
    [CrossRef]
  8. H. Wang, D. Goorskey, and M. Xiao, Phys. Rev. Lett. 87, 073601 (2001).
    [CrossRef] [PubMed]
  9. H. Wang, D. Goorskey, and M. Xiao, J. Mod. Opt. 49, 335 (2002).
    [CrossRef]
  10. L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
    [CrossRef] [PubMed]
  11. M. D. Lukin, M. Fleishhauer, M. O. Scully, and V. L. Velichaushy, Opt. Lett. 23, 295 (1998).
    [CrossRef]
  12. J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
    [CrossRef] [PubMed]
  13. J. Gripp, S. L. Mielke, L. A. Orozco, and H. J. Carmichael, Phys. Rev. A 54, R3746 (1996).
    [CrossRef] [PubMed]
  14. H. Kang, G. Hernandez, and Y. Zhu, Phys. Rev. A 70, 011801(R) (2004).
    [CrossRef]
  15. V. S. C. M. Rao, S. D. Gupta, and G. S. Agarwal, Opt. Lett. 29, 307 (2004).
    [CrossRef]

2004 (2)

H. Kang, G. Hernandez, and Y. Zhu, Phys. Rev. A 70, 011801(R) (2004).
[CrossRef]

V. S. C. M. Rao, S. D. Gupta, and G. S. Agarwal, Opt. Lett. 29, 307 (2004).
[CrossRef]

2002 (2)

W. R. Boyd and J. D. Gauthier, Prog. Opt. 43, 497 (2002).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, J. Mod. Opt. 49, 335 (2002).
[CrossRef]

2001 (1)

H. Wang, D. Goorskey, and M. Xiao, Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

2000 (2)

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

1998 (1)

1996 (2)

C. C. Davis, Laser and Electro-Optics (Cambridge U. Press, 1996), pp. 68.

J. Gripp, S. L. Mielke, L. A. Orozco, and H. J. Carmichael, Phys. Rev. A 54, R3746 (1996).
[CrossRef] [PubMed]

1995 (2)

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

1992 (1)

R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. 68, 1132 (1992).
[CrossRef] [PubMed]

1989 (1)

H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, Phys. Rev. A 40, 5516 (1989).
[CrossRef] [PubMed]

Agarwal, G. S.

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Boyd, W. R.

W. R. Boyd and J. D. Gauthier, Prog. Opt. 43, 497 (2002).
[CrossRef]

Brecha, R. J.

H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, Phys. Rev. A 40, 5516 (1989).
[CrossRef] [PubMed]

Burkett, W. H.

Carmichael, H. J.

J. Gripp, S. L. Mielke, L. A. Orozco, and H. J. Carmichael, Phys. Rev. A 54, R3746 (1996).
[CrossRef] [PubMed]

H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, Phys. Rev. A 40, 5516 (1989).
[CrossRef] [PubMed]

Davis, C. C.

C. C. Davis, Laser and Electro-Optics (Cambridge U. Press, 1996), pp. 68.

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
[CrossRef] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Fleishhauer, M.

Gauthier, J. D.

W. R. Boyd and J. D. Gauthier, Prog. Opt. 43, 497 (2002).
[CrossRef]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

Goorskey, D.

H. Wang, D. Goorskey, and M. Xiao, J. Mod. Opt. 49, 335 (2002).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

H. Wang, D. Goorskey, W. H. Burkett, and M. Xiao, Opt. Lett. 25, 1732 (2000).
[CrossRef]

Gripp, J.

J. Gripp, S. L. Mielke, L. A. Orozco, and H. J. Carmichael, Phys. Rev. A 54, R3746 (1996).
[CrossRef] [PubMed]

Gupta, S. D.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Hernandez, G.

H. Kang, G. Hernandez, and Y. Zhu, Phys. Rev. A 70, 011801(R) (2004).
[CrossRef]

Jin, S.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

Kang, H.

H. Kang, G. Hernandez, and Y. Zhu, Phys. Rev. A 70, 011801(R) (2004).
[CrossRef]

Kimble, H. J.

R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. 68, 1132 (1992).
[CrossRef] [PubMed]

H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, Phys. Rev. A 40, 5516 (1989).
[CrossRef] [PubMed]

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
[CrossRef] [PubMed]

Li, Y.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

Lukin, M. D.

Mielke, S. L.

J. Gripp, S. L. Mielke, L. A. Orozco, and H. J. Carmichael, Phys. Rev. A 54, R3746 (1996).
[CrossRef] [PubMed]

Orozco, L. A.

J. Gripp, S. L. Mielke, L. A. Orozco, and H. J. Carmichael, Phys. Rev. A 54, R3746 (1996).
[CrossRef] [PubMed]

Raizen, M. G.

H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, Phys. Rev. A 40, 5516 (1989).
[CrossRef] [PubMed]

Rao, V. S. C. M.

Rempe, G.

R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. 68, 1132 (1992).
[CrossRef] [PubMed]

Rice, P. R.

H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, Phys. Rev. A 40, 5516 (1989).
[CrossRef] [PubMed]

Scully, M. O.

Thompson, R. J.

R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. 68, 1132 (1992).
[CrossRef] [PubMed]

Velichaushy, V. L.

Wang, H.

H. Wang, D. Goorskey, and M. Xiao, J. Mod. Opt. 49, 335 (2002).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

H. Wang, D. Goorskey, W. H. Burkett, and M. Xiao, Opt. Lett. 25, 1732 (2000).
[CrossRef]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
[CrossRef] [PubMed]

Xiao, M.

H. Wang, D. Goorskey, and M. Xiao, J. Mod. Opt. 49, 335 (2002).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

H. Wang, D. Goorskey, W. H. Burkett, and M. Xiao, Opt. Lett. 25, 1732 (2000).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

Zhu, Y.

H. Kang, G. Hernandez, and Y. Zhu, Phys. Rev. A 70, 011801(R) (2004).
[CrossRef]

J. Mod. Opt. (1)

H. Wang, D. Goorskey, and M. Xiao, J. Mod. Opt. 49, 335 (2002).
[CrossRef]

Nature (2)

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (4)

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

J. Gripp, S. L. Mielke, L. A. Orozco, and H. J. Carmichael, Phys. Rev. A 54, R3746 (1996).
[CrossRef] [PubMed]

H. Kang, G. Hernandez, and Y. Zhu, Phys. Rev. A 70, 011801(R) (2004).
[CrossRef]

H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, Phys. Rev. A 40, 5516 (1989).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

H. Wang, D. Goorskey, and M. Xiao, Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. 68, 1132 (1992).
[CrossRef] [PubMed]

Prog. Opt. (1)

W. R. Boyd and J. D. Gauthier, Prog. Opt. 43, 497 (2002).
[CrossRef]

Other (1)

C. C. Davis, Laser and Electro-Optics (Cambridge U. Press, 1996), pp. 68.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Linear and (c) nonlinear refractive indices and their derivatives (b) and (d), respectively, as a function of Δ p . The parameters used in the calculation are decay rate for probe and coupling transitions γ 21 = 2 π × 3 MHz , ground-state dephasing rate γ 31 = 2 π × 0.1 MHz , total decay rate γ = 2 π × 3.5 MHz , Ω c = 2 π × 6 MHz , Δ c = 0 , N = 5.5 × 10 11 cm 3 .

Fig. 2
Fig. 2

Two typical cavity transmissions with different input intensities. (a) Cavity transmission at P p = 2.7 mW ; (b) cavity transmission at P p = 7.4 mW . Inset: empty cavity transmission (at far from atomic transition). Other experimental parameters are P c = 24 mW , T = 70 ° C , Δ c = 0 , θ = 60 MHz .

Fig. 3
Fig. 3

Experimentally measured cavity linewidth versus the input power. Dotted line corresponds to the empty cavity linewidth. Squares are the linewidths measured under the same experimental conditions as in Fig. 2.

Fig. 4
Fig. 4

Experimentally measured cavity linewidth as a function of the coupling laser power. Curve (a) is for P p = 7.4 mW (in the superluminal region) and curve (b) for P p = 2.7 mW (in the slow light region). Other experimental parameters are same as in Fig. 2. The solid curves are best fits of the data using a quadratic function.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n g = n + ω p ( n ω p ) ,
n g = ( n 1 + n 2 I p ) + ω p ( n 1 ω p + n 2 ω p I p ) ,
( Δ ν ) = ( Δ ν ) 0 ( 1 R κ ) κ ( 1 R ) 1 1 + l L ( n g 1 ) ,

Metrics