Abstract

Panoramic full-field imaging is demonstrated by applying spatial multiplexing to Fourier transform holography. Multiple object and reference waves extend the effective field of view for lensless imaging without compromising the spatial resolution. In this way, local regions of interest distributed throughout a sample can be simultaneously imaged with high spatial resolution. A method is proposed for capturing multiple ultrafast images of a sample with a single x-ray pulse.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Stroke and D. Falconer, Phys. Lett. 13, 306 (1964).
  2. J. T. Winthrop and C. R. Worthington, Phys. Lett. 15, 124 (1965).
    [CrossRef]
  3. I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, Science 256, 1009 (1992).
    [CrossRef] [PubMed]
  4. S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, Nature 432, 885 (2004).
    [CrossRef] [PubMed]
  5. H. He, U. Weierstall, J. C. H. Spence, H. A. M. Howells, H. Padmore, S. Marchesini, and H. N. Chapman, Appl. Phys. Lett. 85, 2454 (2004).
    [CrossRef]
  6. J. W. Goodman and J. D. Gaskill, Proc. IEEE 57, 823 (1969).
    [CrossRef]
  7. W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, Appl. Phys. Lett. 89, 163112 (2006).
    [CrossRef]
  8. Princeton Instruments Camera models PI-SX and PI-MTE.
  9. R. W. Stroud and W. T. Rhodes, Appl. Opt. 33, 3627 (1994).
    [CrossRef] [PubMed]
  10. R. Neutze and J. Hajdu, Proc. Natl. Acad. Sci. U.S.A. 94, 5651 (1997).
    [CrossRef] [PubMed]
  11. O. Synnergren, M. Harbst, T. Missalla, J. Larsson, G. Katona, R. Neutze, and R. Wouts, Appl. Phys. Lett. 80, 3727 (2002).
    [CrossRef]
  12. H. N. Chapman, A. Barty, S. Marchesini, A. Noy, S. R. Hau-Riege, C. Cui, M. R. Howells, R. Rosen, H. He, J. C. H. Spence, U. Weierstall, T. Beetz, C. Jacobsen, and D. Shapiro, J. Opt. Soc. Am. A 23, 1179 (2006).
    [CrossRef]

2006

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, Appl. Phys. Lett. 89, 163112 (2006).
[CrossRef]

H. N. Chapman, A. Barty, S. Marchesini, A. Noy, S. R. Hau-Riege, C. Cui, M. R. Howells, R. Rosen, H. He, J. C. H. Spence, U. Weierstall, T. Beetz, C. Jacobsen, and D. Shapiro, J. Opt. Soc. Am. A 23, 1179 (2006).
[CrossRef]

2004

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, Nature 432, 885 (2004).
[CrossRef] [PubMed]

H. He, U. Weierstall, J. C. H. Spence, H. A. M. Howells, H. Padmore, S. Marchesini, and H. N. Chapman, Appl. Phys. Lett. 85, 2454 (2004).
[CrossRef]

2002

O. Synnergren, M. Harbst, T. Missalla, J. Larsson, G. Katona, R. Neutze, and R. Wouts, Appl. Phys. Lett. 80, 3727 (2002).
[CrossRef]

1997

R. Neutze and J. Hajdu, Proc. Natl. Acad. Sci. U.S.A. 94, 5651 (1997).
[CrossRef] [PubMed]

1994

1992

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, Science 256, 1009 (1992).
[CrossRef] [PubMed]

1969

J. W. Goodman and J. D. Gaskill, Proc. IEEE 57, 823 (1969).
[CrossRef]

1965

J. T. Winthrop and C. R. Worthington, Phys. Lett. 15, 124 (1965).
[CrossRef]

1964

G. W. Stroke and D. Falconer, Phys. Lett. 13, 306 (1964).

Anderson, E. H.

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, Science 256, 1009 (1992).
[CrossRef] [PubMed]

Barty, A.

Beetz, T.

Chapman, H. N.

Chen, K.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, Appl. Phys. Lett. 89, 163112 (2006).
[CrossRef]

Cui, C.

Eberhardt, W.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, Appl. Phys. Lett. 89, 163112 (2006).
[CrossRef]

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, Nature 432, 885 (2004).
[CrossRef] [PubMed]

Eisebitt, S.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, Appl. Phys. Lett. 89, 163112 (2006).
[CrossRef]

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, Nature 432, 885 (2004).
[CrossRef] [PubMed]

Falconer, D.

G. W. Stroke and D. Falconer, Phys. Lett. 13, 306 (1964).

Gaskill, J. D.

J. W. Goodman and J. D. Gaskill, Proc. IEEE 57, 823 (1969).
[CrossRef]

Goodman, J. W.

J. W. Goodman and J. D. Gaskill, Proc. IEEE 57, 823 (1969).
[CrossRef]

Günther, C.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, Appl. Phys. Lett. 89, 163112 (2006).
[CrossRef]

Hajdu, J.

R. Neutze and J. Hajdu, Proc. Natl. Acad. Sci. U.S.A. 94, 5651 (1997).
[CrossRef] [PubMed]

Harbst, M.

O. Synnergren, M. Harbst, T. Missalla, J. Larsson, G. Katona, R. Neutze, and R. Wouts, Appl. Phys. Lett. 80, 3727 (2002).
[CrossRef]

Hau-Riege, S. R.

He, H.

Hellwig, O.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, Appl. Phys. Lett. 89, 163112 (2006).
[CrossRef]

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, Nature 432, 885 (2004).
[CrossRef] [PubMed]

Howells, H. A. M.

H. He, U. Weierstall, J. C. H. Spence, H. A. M. Howells, H. Padmore, S. Marchesini, and H. N. Chapman, Appl. Phys. Lett. 85, 2454 (2004).
[CrossRef]

Howells, M. R.

Jacobsen, C.

Katona, G.

O. Synnergren, M. Harbst, T. Missalla, J. Larsson, G. Katona, R. Neutze, and R. Wouts, Appl. Phys. Lett. 80, 3727 (2002).
[CrossRef]

Kern, D. P.

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, Science 256, 1009 (1992).
[CrossRef] [PubMed]

Kirz, J.

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, Science 256, 1009 (1992).
[CrossRef] [PubMed]

Larsson, J.

O. Synnergren, M. Harbst, T. Missalla, J. Larsson, G. Katona, R. Neutze, and R. Wouts, Appl. Phys. Lett. 80, 3727 (2002).
[CrossRef]

Lörgen, M.

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, Nature 432, 885 (2004).
[CrossRef] [PubMed]

Lüning, J.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, Appl. Phys. Lett. 89, 163112 (2006).
[CrossRef]

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, Nature 432, 885 (2004).
[CrossRef] [PubMed]

Marchesini, S.

McNulty, I.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, Appl. Phys. Lett. 89, 163112 (2006).
[CrossRef]

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, Science 256, 1009 (1992).
[CrossRef] [PubMed]

Missalla, T.

O. Synnergren, M. Harbst, T. Missalla, J. Larsson, G. Katona, R. Neutze, and R. Wouts, Appl. Phys. Lett. 80, 3727 (2002).
[CrossRef]

Neutze, R.

O. Synnergren, M. Harbst, T. Missalla, J. Larsson, G. Katona, R. Neutze, and R. Wouts, Appl. Phys. Lett. 80, 3727 (2002).
[CrossRef]

R. Neutze and J. Hajdu, Proc. Natl. Acad. Sci. U.S.A. 94, 5651 (1997).
[CrossRef] [PubMed]

Noy, A.

Padmore, H.

H. He, U. Weierstall, J. C. H. Spence, H. A. M. Howells, H. Padmore, S. Marchesini, and H. N. Chapman, Appl. Phys. Lett. 85, 2454 (2004).
[CrossRef]

Rhodes, W. T.

Rick, R.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, Appl. Phys. Lett. 89, 163112 (2006).
[CrossRef]

Rosen, R.

Scherz, A.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, Appl. Phys. Lett. 89, 163112 (2006).
[CrossRef]

Schlotter, W. F.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, Appl. Phys. Lett. 89, 163112 (2006).
[CrossRef]

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, Nature 432, 885 (2004).
[CrossRef] [PubMed]

Shapiro, D.

Spence, J. C. H.

Stöhr, J.

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, Appl. Phys. Lett. 89, 163112 (2006).
[CrossRef]

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, Nature 432, 885 (2004).
[CrossRef] [PubMed]

Stroke, G. W.

G. W. Stroke and D. Falconer, Phys. Lett. 13, 306 (1964).

Stroud, R. W.

Synnergren, O.

O. Synnergren, M. Harbst, T. Missalla, J. Larsson, G. Katona, R. Neutze, and R. Wouts, Appl. Phys. Lett. 80, 3727 (2002).
[CrossRef]

Weierstall, U.

Winthrop, J. T.

J. T. Winthrop and C. R. Worthington, Phys. Lett. 15, 124 (1965).
[CrossRef]

Worthington, C. R.

J. T. Winthrop and C. R. Worthington, Phys. Lett. 15, 124 (1965).
[CrossRef]

Wouts, R.

O. Synnergren, M. Harbst, T. Missalla, J. Larsson, G. Katona, R. Neutze, and R. Wouts, Appl. Phys. Lett. 80, 3727 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

O. Synnergren, M. Harbst, T. Missalla, J. Larsson, G. Katona, R. Neutze, and R. Wouts, Appl. Phys. Lett. 80, 3727 (2002).
[CrossRef]

H. He, U. Weierstall, J. C. H. Spence, H. A. M. Howells, H. Padmore, S. Marchesini, and H. N. Chapman, Appl. Phys. Lett. 85, 2454 (2004).
[CrossRef]

W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stöhr, J. Lüning, S. Eisebitt, C. Günther, W. Eberhardt, O. Hellwig, and I. McNulty, Appl. Phys. Lett. 89, 163112 (2006).
[CrossRef]

J. Opt. Soc. Am. A

Nature

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, Nature 432, 885 (2004).
[CrossRef] [PubMed]

Phys. Lett.

G. W. Stroke and D. Falconer, Phys. Lett. 13, 306 (1964).

J. T. Winthrop and C. R. Worthington, Phys. Lett. 15, 124 (1965).
[CrossRef]

Proc. IEEE

J. W. Goodman and J. D. Gaskill, Proc. IEEE 57, 823 (1969).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

R. Neutze and J. Hajdu, Proc. Natl. Acad. Sci. U.S.A. 94, 5651 (1997).
[CrossRef] [PubMed]

Science

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, Science 256, 1009 (1992).
[CrossRef] [PubMed]

Other

Princeton Instruments Camera models PI-SX and PI-MTE.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) SEM of the FTH transmission mask. An x-ray opaque 1.4 μ m Au layer was sputter deposited onto a 100 nm Si 3 N 4 membrane. (b) The soft x-ray Fourier transform hologram shown was recorded with a momentum transfer range of q = ± 0.09 nm 1 . The base ten logarithm of the intensity is shown in false color with the number of photons detected specified by the colorbar. (c) The squared magnitude of the spatial Fourier transform of the hologram in (b) is the autocorrelation reconstruction that presents the intensity transmission profile of the sample.

Fig. 2
Fig. 2

(a) Scale illustration of the extended field of view absorption mask spanning 180 μ m . Transmission structures appear black while the opaque Au is gray. (b) SEM of an isolated region of the illustration is enlarged, displaying both a 70 nm diameter reference hole and arrow structure. (c) The hologram is a composite of data recorded with and without a beamstop. To cope with the direct beam a Gaussian high pass filter was applied to the hologram thus minimizing the ringing in the reconstruction as suggested by Chapman et al. [12]. (d) Fourier transform reconstruction of the hologram where the < 50 nm spatial resolution is limited by the size of the reference. The weak contrast in the diagonal arrows results from reduced high frequency fringe visibility. One possible source is the presence of charge in multiple adjacent CCD pixels upon detection of a single photon.

Fig. 3
Fig. 3

Illustration of the envisioned cross-beam time resolved single shot imaging experiment. (a) The pump pulse propagates along the sample to excite it and establish time scale t x = ( Δ cos α ) c . (b) The x-ray probe pulse simultaneously illuminates the entire sample thus storing the temporal evolution of the sample in the hologram. (c) The relative delay between the pump and probe is defined by each arrow’s orientation. The horizontal arrow, t 1 , has the shortest delay and t 4 the longest (the contrast in this image has been enhanced for clarity).

Metrics