Abstract

We derive a general expression of the electric dyadic Green function in a time-reversal cavity, based on vector diffraction theory in the frequency domain. Our theory gives a rigorous framework to time-reversal experiments using electromagnetic waves and suggests a methodology to design structures generating subwavelength focusing after time reversal.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves

Dan Marom, Dmitriy Panasenko, Rostislav Rokitski, Pang-Chen Sun, and Yeshaiahu Fainman
Opt. Lett. 25(2) 132-134 (2000)

Reciprocity of evanescent electromagnetic waves

Rémi Carminati, Manuel Nieto-Vesperinas, and Jean-Jacques Greffet
J. Opt. Soc. Am. A 15(3) 706-712 (1998)

Quantum electrodynamics of optical activity in birefringent crystals

D. Eimerl
J. Opt. Soc. Am. B 5(7) 1453-1461 (1988)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription