Abstract

We explore periodic gold nanoposts as substrates for the enhanced surface plasmon resonance imaging (SPRi) detection of DNA hybridization. Rigorous coupled-wave analysis was used to model and design the nanopost-based SPRi biosensor. Arrayed gold nanoposts on gold-coated glass substrate, with various widths and periodicity, were fabricated using electron-beam lithography and characterized with scanning electron and atomic force microscopy. A scanning-angle SPRi apparatus was used to conduct the kinetic analysis of DNA hybridization on nanopost-based sensor surface and assess the corresponding SPR signal amplification. Experimental results showed that both the nanostructure size and period influenced the SPR signal enhancement; the optimized 30nm height, 50nm size, and 110nm period nanoposts provided a fivefold SPR signal amplification compared with the plain 50nm thick gold film used as control.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Chen, S. F. Cheng, L. K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).
    [CrossRef]
  2. A. B. Dahlin, J. O. Tegenfeldt, and F. Hook, Anal. Chem. 78, 4416 (2006).
    [CrossRef] [PubMed]
  3. A. J. Haes and R. P. Van Duyne, Anal. Bioanal. Chem. 379, 920-930 (2004).
    [CrossRef] [PubMed]
  4. E. Hutter and J. H. Fendler, Adv. Mater. (Weinheim, Germany) 16, 1685 (2004).
    [CrossRef]
  5. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, J. Am. Chem. Soc. 122, 9071 (2000).
    [CrossRef]
  6. S. J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, Opt. Lett. 29, 1390 (2004).
    [CrossRef] [PubMed]
  7. K. M. Byun, S. J. Kim, and D. Kim, Opt. Express 13, 3737 (2005).
    [CrossRef] [PubMed]
  8. K. M. Byun, D. Kim, and S. J. Kim, Sens. Actuators B 117, 401 (2006).
    [CrossRef]
  9. D. Kim, J. Opt. Soc. Am. A 23, 2307 (2006).
    [CrossRef]
  10. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, Opt. Lett. 28, 1870 (2003).
    [CrossRef] [PubMed]
  11. S. Elhadj, G. Singh, and R. F. Saraf, Langmuir 20, 5539 (2004).
    [CrossRef]
  12. A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, Nucl. Acid Res. 29, 5163 (2001).
    [CrossRef]

2007

C. D. Chen, S. F. Cheng, L. K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).
[CrossRef]

2006

A. B. Dahlin, J. O. Tegenfeldt, and F. Hook, Anal. Chem. 78, 4416 (2006).
[CrossRef] [PubMed]

K. M. Byun, D. Kim, and S. J. Kim, Sens. Actuators B 117, 401 (2006).
[CrossRef]

D. Kim, J. Opt. Soc. Am. A 23, 2307 (2006).
[CrossRef]

2005

2004

S. J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, Opt. Lett. 29, 1390 (2004).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, Anal. Bioanal. Chem. 379, 920-930 (2004).
[CrossRef] [PubMed]

E. Hutter and J. H. Fendler, Adv. Mater. (Weinheim, Germany) 16, 1685 (2004).
[CrossRef]

S. Elhadj, G. Singh, and R. F. Saraf, Langmuir 20, 5539 (2004).
[CrossRef]

2003

2001

A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, Nucl. Acid Res. 29, 5163 (2001).
[CrossRef]

2000

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, J. Am. Chem. Soc. 122, 9071 (2000).
[CrossRef]

Benkovic, S. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, J. Am. Chem. Soc. 122, 9071 (2000).
[CrossRef]

Byun, K. M.

K. M. Byun, D. Kim, and S. J. Kim, Sens. Actuators B 117, 401 (2006).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, Opt. Express 13, 3737 (2005).
[CrossRef] [PubMed]

Chau, L. K.

C. D. Chen, S. F. Cheng, L. K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).
[CrossRef]

Chen, C. D.

C. D. Chen, S. F. Cheng, L. K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).
[CrossRef]

Chen, S. J.

Cheng, S. F.

C. D. Chen, S. F. Cheng, L. K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).
[CrossRef]

Chien, F. C.

Dahlin, A. B.

A. B. Dahlin, J. O. Tegenfeldt, and F. Hook, Anal. Chem. 78, 4416 (2006).
[CrossRef] [PubMed]

Elhadj, S.

S. Elhadj, G. Singh, and R. F. Saraf, Langmuir 20, 5539 (2004).
[CrossRef]

Fendler, J. H.

E. Hutter and J. H. Fendler, Adv. Mater. (Weinheim, Germany) 16, 1685 (2004).
[CrossRef]

Georgiadis, R. M.

A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, Nucl. Acid Res. 29, 5163 (2001).
[CrossRef]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, Anal. Bioanal. Chem. 379, 920-930 (2004).
[CrossRef] [PubMed]

He, L.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, J. Am. Chem. Soc. 122, 9071 (2000).
[CrossRef]

Heaton, R. J.

A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, Nucl. Acid Res. 29, 5163 (2001).
[CrossRef]

Hook, F.

A. B. Dahlin, J. O. Tegenfeldt, and F. Hook, Anal. Chem. 78, 4416 (2006).
[CrossRef] [PubMed]

Hutter, E.

E. Hutter and J. H. Fendler, Adv. Mater. (Weinheim, Germany) 16, 1685 (2004).
[CrossRef]

Keating, C. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, J. Am. Chem. Soc. 122, 9071 (2000).
[CrossRef]

Kim, D.

Kim, P. S.

Kim, S. J.

K. M. Byun, D. Kim, and S. J. Kim, Sens. Actuators B 117, 401 (2006).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, Opt. Express 13, 3737 (2005).
[CrossRef] [PubMed]

Lee, G.

Lee, K. C.

Lin, G. Y.

Musick, M. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, J. Am. Chem. Soc. 122, 9071 (2000).
[CrossRef]

Natan, M. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, J. Am. Chem. Soc. 122, 9071 (2000).
[CrossRef]

Nicewarner, S. R.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, J. Am. Chem. Soc. 122, 9071 (2000).
[CrossRef]

Oh, C. H.

Park, S.

Peterson, A. W.

A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, Nucl. Acid Res. 29, 5163 (2001).
[CrossRef]

Salinas, F. G.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, J. Am. Chem. Soc. 122, 9071 (2000).
[CrossRef]

Saraf, R. F.

S. Elhadj, G. Singh, and R. F. Saraf, Langmuir 20, 5539 (2004).
[CrossRef]

Singh, G.

S. Elhadj, G. Singh, and R. F. Saraf, Langmuir 20, 5539 (2004).
[CrossRef]

Song, S. H.

Tegenfeldt, J. O.

A. B. Dahlin, J. O. Tegenfeldt, and F. Hook, Anal. Chem. 78, 4416 (2006).
[CrossRef] [PubMed]

Van Duyne, R. P.

A. J. Haes and R. P. Van Duyne, Anal. Bioanal. Chem. 379, 920-930 (2004).
[CrossRef] [PubMed]

Wang, C. R. C.

C. D. Chen, S. F. Cheng, L. K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).
[CrossRef]

Adv. Mater. (Weinheim, Germany)

E. Hutter and J. H. Fendler, Adv. Mater. (Weinheim, Germany) 16, 1685 (2004).
[CrossRef]

Anal. Bioanal. Chem.

A. J. Haes and R. P. Van Duyne, Anal. Bioanal. Chem. 379, 920-930 (2004).
[CrossRef] [PubMed]

Anal. Chem.

A. B. Dahlin, J. O. Tegenfeldt, and F. Hook, Anal. Chem. 78, 4416 (2006).
[CrossRef] [PubMed]

Biosens. Bioelectron.

C. D. Chen, S. F. Cheng, L. K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).
[CrossRef]

J. Am. Chem. Soc.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, J. Am. Chem. Soc. 122, 9071 (2000).
[CrossRef]

J. Opt. Soc. Am. A

Langmuir

S. Elhadj, G. Singh, and R. F. Saraf, Langmuir 20, 5539 (2004).
[CrossRef]

Nucl. Acid Res.

A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, Nucl. Acid Res. 29, 5163 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Actuators B

K. M. Byun, D. Kim, and S. J. Kim, Sens. Actuators B 117, 401 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Numerically obtained ASEF for SPR substrate with nanoposts of different size and periodicity.

Fig. 2
Fig. 2

Sample images of fabricated Au nanoposts 50 nm in size, 110 nm period (a) SEM image; (b) AFM surface plot.

Fig. 3
Fig. 3

Kinetic curves of 250 nM DNA target hybridization on nanostructured SPR substrate having nanoposts 30 nm in height with (a) 110 nm period, 50 nm width and different initial Au film thickness; (b) 50 nm width, underlying 20 nm thick Au film and different period; (c) 110 nm period, underlying 20 nm thick Au film and different size.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ASEF = Δ Θ NSPR Δ Θ SPR = Θ NSPR ( dsDNA ) Θ NSPR ( ssDNA ) Θ SPR ( dsDNA ) Θ SPR ( ssDNA ) ,

Metrics