Abstract

We report the fabrication of a tunable all-solid photonic bandgap fiber coupler based on the side-polishing technique. This device is believed to be the first demonstration of a photonic bandgap fiber coupler to eliminate the contamination of the open air holes. By adjusting the length of the interaction section, the tunable coupling ratio as much as 92.5% at 1550nm is achieved. The investigation of the spectrum properties shows that the coupler has excellent tunability properties, for which the coupling ratio can be smoothly and continuously controlled.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, Opt. Lett. 29, 2369 (2004).
    [CrossRef] [PubMed]
  2. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, Opt. Express 13, 309 (2005).
    [CrossRef] [PubMed]
  3. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U. C. Paek, and G. H. Yang, Opt. Lett. 27, 812 (2002).
    [CrossRef]
  4. W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004).
    [CrossRef]
  5. H. Kim, J. Kim, U.-C. Paek, B. H. Lee, and K. T. Kim, Opt. Lett. 29, 1194 (2004).
    [CrossRef] [PubMed]
  6. J. Lægsgaard, Opt. Lett. 30, 3281 (2005).
    [CrossRef]
  7. M. Skorobogatiy, K. Saitoh, and M. Koshiba, Opt. Lett. 31, 314 (2006).
    [CrossRef] [PubMed]
  8. M. J. F. Digonnet and H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
    [CrossRef]
  9. G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, Opt. Lett. 32, 1023 (2007).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (2)

2004 (3)

2002 (1)

1982 (1)

M. J. F. Digonnet and H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

Argyros, A.

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, Opt. Express 13, 309 (2005).
[CrossRef] [PubMed]

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004).
[CrossRef]

Bird, D. M.

Birks, T. A.

Cordeiro, C. M. B.

Digonnet, M. J. F.

M. J. F. Digonnet and H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

Eom, J. B.

George, A. K.

Hedley, T. D.

Issa, N. A.

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004).
[CrossRef]

Kim, H.

Kim, J.

Kim, K. T.

Knight, J. C.

Koshiba, M.

Lægsgaard, J.

Lee, B. H.

Leon-Saval, S. G.

Luan, F.

Luo, J.

Moon, D. S.

Padden, W. E. P.

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004).
[CrossRef]

Paek, U. C.

Paek, U.-C.

Pearce, G. J.

Ren, G.

Russell, P. St. J.

Saitoh, K.

Shaw, H. J.

M. J. F. Digonnet and H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

Shum, P.

Skorobogatiy, M.

Tong, W.

van Eijkelenborg, M. A.

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004).
[CrossRef]

Yang, G. H.

Yu, X.

Zhang, L.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Optical micrograph of the fabricated photonic bandgap fiber. High-index and low-index regions appear lighter and darker, respectively, in the image. The outer diameter of the fiber is 175 μ m . (b) SEM of the fiber cross section close to the core. Only the germanium doped parts can be identified within each periodical cell.

Fig. 2
Fig. 2

(a) Silica block with an all-solid PBGF buried in the groove. (b) Polished half-block in which the all-solid PBGF was embedded.

Fig. 3
Fig. 3

Schematic top view of the half-block and micrographs of the polished surface.

Fig. 4
Fig. 4

(a) Schematic of the mated side-polished half-blocks. (b) Schematic of the tunable mechanism. By longitudinally adjusting the relative positions of the upper half-block, the coupling ratio could be tuned smoothly and continuously.

Fig. 5
Fig. 5

Coupling ratios of through and coupled ports as a function of longitudinal displacement at a wavelength of 1550 nm .

Fig. 6
Fig. 6

Normalized spectra of the coupling ratio for coupled port measured at longitudinal displacement d = 0 , 20, 40, 60, and 80 μ m . The inset shows the variation of the maximum coupling ratio wavelength in terms of the longitudinal displacement.

Metrics