Abstract

We have developed ultrabroadband (>2000cm1) multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy using a subnanosecond (sub-ns) microchip laser source. A photonic crystal fiber specifically designed for sub-ns supercontinuum (SC) generation has been used for obtaining ultrabroadband Stokes radiation, which enables us to achieve simultaneous vibrational excitation in the range from 800 to 3000cm1. We have successfully obtained multiplex CARS spectra for several molecular liquids. Since the CARS system using the sub-ns SC is simple and compact, it can be easily applied to ultrabroadband multiplex CARS microspectroscopy.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Zumbusch, G. R. Holton, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
    [CrossRef]
  2. J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, Biophys. J. 83, 502 (2002).
    [CrossRef] [PubMed]
  3. M. Hashimoto, T. Araki, and S. Kawata, Opt. Lett. 25, 1768 (2000).
    [CrossRef]
  4. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
    [CrossRef]
  5. C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, J. Raman Spectrosc. 32, 495 (2001).
    [CrossRef]
  6. I. G. Petrov and V. V. Yakovlev, Opt. Express 13, 1299 (2005).
    [CrossRef] [PubMed]
  7. H. Kano and H. Hamaguchi, Chem. Lett. 35, 1124 (2006).
    [CrossRef]
  8. G. W. H. Wurpel, J. M. Schins, and M. Müller, Opt. Lett. 27, 1093 (2002).
    [CrossRef]
  9. H. Kano and H. Hamaguchi, Appl. Phys. Lett. 86, 121113 (2005).
    [CrossRef]
  10. T. W. Kee and M. T. Cicerone, Opt. Lett. 29, 2701 (2004).
    [CrossRef] [PubMed]
  11. P. Russell, Science 299, 358 (2003).
    [CrossRef] [PubMed]
  12. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  13. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
    [CrossRef] [PubMed]
  14. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
    [CrossRef] [PubMed]
  15. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, Opt. Lett. 26, 608 (2001).
    [CrossRef]
  16. H. N. Paulsen, K. M. Hilligsoe, J. Thogersen, S. R. Keiding, and J. J. Larsen, Opt. Lett. 28, 1123 (2003).
    [CrossRef] [PubMed]
  17. B. V. Vacano, W. Wohllenben, and M. Motzkus, Opt. Lett. 31, 413 (2006).
    [CrossRef]
  18. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
    [CrossRef]
  19. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, Opt. Express 12, 2864 (2004).
    [CrossRef] [PubMed]
  20. W. J. Wadsworth, N. Y. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, Opt. Express 12, 299 (2004).
    [CrossRef] [PubMed]
  21. P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, andP. Nerin, Opt. Express 12, 4366 (2004).
    [CrossRef] [PubMed]
  22. V. Tombelaine, C. Lesivgne, P. Leproux, L. Grossard, V. Coudere, J. L. Auguste, J.-M. Blondy, G. Huss, andP.-H. Pioger, Opt. Express 13, 7399 (2005).
    [CrossRef] [PubMed]

2006 (2)

2005 (3)

2004 (4)

2003 (2)

2002 (3)

G. W. H. Wurpel, J. M. Schins, and M. Müller, Opt. Lett. 27, 1093 (2002).
[CrossRef]

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, Biophys. J. 83, 502 (2002).
[CrossRef] [PubMed]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

2001 (3)

C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, J. Raman Spectrosc. 32, 495 (2001).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, Opt. Lett. 26, 608 (2001).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

2000 (4)

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
[CrossRef]

M. Hashimoto, T. Araki, and S. Kawata, Opt. Lett. 25, 1768 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holton, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

H. Kano and H. Hamaguchi, Appl. Phys. Lett. 86, 121113 (2005).
[CrossRef]

Biophys. J. (1)

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, Biophys. J. 83, 502 (2002).
[CrossRef] [PubMed]

Chem. Lett. (1)

H. Kano and H. Hamaguchi, Chem. Lett. 35, 1124 (2006).
[CrossRef]

Electron. Lett. (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, Electron. Lett. 37, 558 (2001).
[CrossRef]

J. Phys. Chem. B (1)

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

J. Raman Spectrosc. (1)

C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, J. Raman Spectrosc. 32, 495 (2001).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

Phys. Rev. Lett. (2)

A. Zumbusch, G. R. Holton, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef] [PubMed]

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

P. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical spectral profile of the supercontinuum in spectral ranges of (a) 525 615 nm and (c) 615 710 nm ; Two-dimensional intensity plot of a time and wavelength two-dimensional trace of the supercontinuum in the ranges of (b) 525 615 nm and (d) 615 710 nm .

Fig. 2
Fig. 2

Experimental setup of nanosecond multiplex CARS spectroscopy; WP, half wave plate; BS, beam splitter; EF, 532 nm edge filter; NF, 532 nm notch filter; BF, bandpass filter.

Fig. 3
Fig. 3

Multiplex CARS spectra for three solvents, (a) benzene, (b) toluene, and (c) pyridine.

Fig. 4
Fig. 4

Multiplex CARS spectra of cyclohexane in the spectral ranges of (a) 600 1400 cm 1 and (b) 2200 3200 cm 1 .

Metrics