Abstract

A mid-infrared laser spectrometer was developed for simultaneous high-precision O18O16 and O17O16 isotope ratio measurements in carbon dioxide. A continuous-wave, liquid-nitrogen cooled, distributed feedback quantum cascade laser, working at a wavelength of 4.3μm, was used to probe C12O216, O16C12O18, and O16C12O17 lines at 2311.8cm1. High sensitivity was achieved by means of wavelength modulation spectroscopy with second-harmonic detection. The experimental reproducibility in the short and long terms was deeply investigated through the accurate analysis of a large number of spectra. In particular, we found a short term precision of 0.5 and 0.6, respectively, for O18O16 and O17O16 isotope ratios. The occurrence of systematic deviations is also discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. H. Thiemens, Science 283, 341 (1999).
    [CrossRef] [PubMed]
  2. R. E. Weston, Chem. Rev. 99, 2115 (1999).
    [CrossRef]
  3. K. Mauersberger, D. Krankowsky, C. Jassen, and R. Schinke, in Advances in Atomic, Molecular, and Optical Physics, B.Bederson and H.Walther, eds. (Elsevier, 2005), pp. 1-54.
  4. L. Joly, V. Zéninari, B. Parvitte, D. Courtois, and G. Durry, Opt. Lett. 31, 143 (2006).
    [CrossRef] [PubMed]
  5. K. P. Petrov, R. F. Curl, and F. K. Tittel, Appl. Phys. B 66, 531 (1998).
    [CrossRef]
  6. A. Castrillo, G. Casa, E. Kerstel, and L. Gianfrani, Appl. Phys. B 81, 863 (2005).
    [CrossRef]
  7. G. Gagliardi, A. Castrillo, R. Q. Iannone, E. Kerstel, and L. Gianfrani, Appl. Phys. B 77, 119 (2003).
    [CrossRef]
  8. Hitran database, http://www.hitran.com.
  9. A. Castrillo, G. Casa, A. Palmieri, and L. Gianfrani, Isotopes Environ. Health Stud. 42, 47 (2006).
    [CrossRef] [PubMed]
  10. E. Theocharous, J. Ishii, and N. P. Fox, Appl. Opt. 43, 4182 (2004).
    [CrossRef] [PubMed]

2006 (2)

L. Joly, V. Zéninari, B. Parvitte, D. Courtois, and G. Durry, Opt. Lett. 31, 143 (2006).
[CrossRef] [PubMed]

A. Castrillo, G. Casa, A. Palmieri, and L. Gianfrani, Isotopes Environ. Health Stud. 42, 47 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Castrillo, G. Casa, E. Kerstel, and L. Gianfrani, Appl. Phys. B 81, 863 (2005).
[CrossRef]

2004 (1)

2003 (1)

G. Gagliardi, A. Castrillo, R. Q. Iannone, E. Kerstel, and L. Gianfrani, Appl. Phys. B 77, 119 (2003).
[CrossRef]

1999 (2)

M. H. Thiemens, Science 283, 341 (1999).
[CrossRef] [PubMed]

R. E. Weston, Chem. Rev. 99, 2115 (1999).
[CrossRef]

1998 (1)

K. P. Petrov, R. F. Curl, and F. K. Tittel, Appl. Phys. B 66, 531 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

K. P. Petrov, R. F. Curl, and F. K. Tittel, Appl. Phys. B 66, 531 (1998).
[CrossRef]

A. Castrillo, G. Casa, E. Kerstel, and L. Gianfrani, Appl. Phys. B 81, 863 (2005).
[CrossRef]

G. Gagliardi, A. Castrillo, R. Q. Iannone, E. Kerstel, and L. Gianfrani, Appl. Phys. B 77, 119 (2003).
[CrossRef]

Chem. Rev. (1)

R. E. Weston, Chem. Rev. 99, 2115 (1999).
[CrossRef]

Isotopes Environ. Health Stud. (1)

A. Castrillo, G. Casa, A. Palmieri, and L. Gianfrani, Isotopes Environ. Health Stud. 42, 47 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Science (1)

M. H. Thiemens, Science 283, 341 (1999).
[CrossRef] [PubMed]

Other (2)

K. Mauersberger, D. Krankowsky, C. Jassen, and R. Schinke, in Advances in Atomic, Molecular, and Optical Physics, B.Bederson and H.Walther, eds. (Elsevier, 2005), pp. 1-54.

Hitran database, http://www.hitran.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Sketch of the laser spectrometer. QCL, quantum cascade laser; PM, parabolic mirror; BS, beam splitter; M, mirror; S, shutter; PG, pressure gauge; D, detector. L1 and L2 are 2 in. diameter Ca F 2 lenses with a 50 and a 200 mm focal length, respectively. L3 and L4 are 1 in. ZnSe lenses with focal lengths of 500 and 50 mm , respectively. A turbo-molecular pump was used to ensure high-vacuum conditions into the cells.

Fig. 2
Fig. 2

Example of WMS spectrum showing the C 12 O 2 16 P ( 15 ) transition belonging to the 2 ν 2 2 + ν 3 2 ν 2 2 band, the O 16 C 12 O 17 P ( 33 ) , and the O 16 C 12 O 18 P ( 25 ) transitions, both belonging to the ν 3 band. A nearly constant background signal is observed and, hence, subtracted by adding an offset on the lock-in output.

Fig. 3
Fig. 3

(a) Short-term reproducibility in the δ O 18 (circles) and δ O 17 (triangles) measurements, as resulted from ten repeated determinations. (b) Results of a long-term reproducibility test. Each point represents the mean value over 10 δ-determinations. The error bars correspond to one standard error.

Tables (1)

Tables Icon

Table 1 List of the Lines Selected for Isotope Ratio Measurements a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ a O measured = S S a S R a S S b S R b 1 = [ ρ ( P S a ) × Δ S a × P S a ] [ ρ ( P R a ) × Δ R a × P R a ] [ ρ ( P S b ) × Δ S b × P S b ] ρ [ ( P R b ) × Δ R b × P R b ] 1 ,

Metrics