Abstract

The possibility of compensating absorption in negative-index metamaterials (NIMs) doped by resonant nonlinear-optical centers is shown. The role of quantum interference and the extraordinary properties of four-wave parametric amplification of counterpropagating electromagnetic waves in NIMs are discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V. M. Shalaev, Nat. Photonics 1, 41 (2007).
    [CrossRef]
  2. M. Lapine, M. Gorkunov, and K. H. Ringhofer, Phys. Rev. E 67, 065601 (2003).
    [CrossRef]
  3. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev. Lett. 91, 037401 (2003).
    [CrossRef] [PubMed]
  4. M. W. Klein, M. Wegener, N. Feth, and S. Linden, Opt. Express 15, 5238 (2007).
    [CrossRef] [PubMed]
  5. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, Phys. Rev. B 69, 165112 (2004).
    [CrossRef]
  6. M. Scalora, G. D'Aguanno, M. Bloemer, M. Centini, N. Mattiucci, D. de Ceglia, and Yu. S. Kivshar, Opt. Express 14, 4746 (2006).
    [CrossRef] [PubMed]
  7. A. K. Popov and V. M. Shalaev, Appl. Phys. B 84, 131 (2006).
    [CrossRef]
  8. A. K. Popov and V. M. Shalaev, Opt. Lett. 31, 2169 (2006).
    [CrossRef] [PubMed]
  9. N. M. Litchinitser, I. R. Gabitov, A. I. Maimistov, and V. M. Shalaev, Opt. Lett. 32, 151 (2007).
    [CrossRef]
  10. A. I. Maimistov and I. R. Gabitov, http://arxiv.org/abs/nlin/0702023.
  11. A. K. Popov, S. A. Myslivets, and T. F. George, Phys. Rev. A 71, 043811 (2005).
    [CrossRef]

2007 (3)

2006 (3)

2005 (1)

A. K. Popov, S. A. Myslivets, and T. F. George, Phys. Rev. A 71, 043811 (2005).
[CrossRef]

2004 (1)

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, Phys. Rev. B 69, 165112 (2004).
[CrossRef]

2003 (2)

M. Lapine, M. Gorkunov, and K. H. Ringhofer, Phys. Rev. E 67, 065601 (2003).
[CrossRef]

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev. Lett. 91, 037401 (2003).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. K. Popov and V. M. Shalaev, Appl. Phys. B 84, 131 (2006).
[CrossRef]

Nat. Photonics (1)

V. M. Shalaev, Nat. Photonics 1, 41 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

A. K. Popov, S. A. Myslivets, and T. F. George, Phys. Rev. A 71, 043811 (2005).
[CrossRef]

Phys. Rev. B (1)

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, Phys. Rev. B 69, 165112 (2004).
[CrossRef]

Phys. Rev. E (1)

M. Lapine, M. Gorkunov, and K. H. Ringhofer, Phys. Rev. E 67, 065601 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev. Lett. 91, 037401 (2003).
[CrossRef] [PubMed]

Other (1)

A. I. Maimistov and I. R. Gabitov, http://arxiv.org/abs/nlin/0702023.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scheme of (a) quantum-controlled FWM interaction and (b) coupling geometry. ω 4 is the signal frequency, ω 2 is the idler, and ω 1 and ω 3 are the control fields. n ( ω 4 ) < 0 .

Fig. 2
Fig. 2

Nonlinear interference resonances induced by the control fields with G 1 = G 3 = 50 GHz and Ω 1 = Ω 3 = 2.5 Γ lg . ( y 4 = Ω 4 Γ m l ) .

Fig. 3
Fig. 3

Laser-induced transmission resonances in the NI frequency domain. Ω 1 = Ω 3 = 2.5 Γ lg . (a)–(d) G 1 = G 3 = 50 GHz . (a)–(c) and (e)–(f) z = 0 . (c), (d) y 4 = y 41 2.5266 . (c) maximum is at α 40 L = L L ra = L 1 L ra 37.02 and T 4 1 at L L ra = 36.52 . (d) intensity distribution inside the slab: signal, solid line; idler, dashed line; L L ra = 36.52 . (e) and (f) L = L 1 . (e) G 3 = 50 GHz . (f) G 1 = 50 GHz .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d a 4 d z = i γ 4 ( 3 ) a 2 * exp [ i Δ k z ] + ( α 4 2 ) a 4 ,
d a 2 d z = i γ 2 ( 3 ) a 4 * exp [ i Δ k z ] ( α 2 2 ) a 2 .

Metrics