Abstract

The propulsion of 3μm polystyrene spheres along a subwavelength optical wire is demonstrated. Velocities in the range of 715μms are observed. Simulations are carried out to evaluate the evanescent field at the waveguide–water suspension interface.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. J. Lang and S. M. Block, Am. J. Phys. 71, 201 (2003).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedic, and T. Yamane, Nature 330, 769 (1987).
    [CrossRef] [PubMed]
  3. Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh, Nature 399, 446 (1999).
    [CrossRef] [PubMed]
  4. S. Kawata and T. Sugiura, Opt. Lett. 17, 772 (1992).
    [CrossRef] [PubMed]
  5. M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
    [CrossRef]
  6. K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson, Opt. Express 13, 1 (2005).
    [CrossRef] [PubMed]
  7. V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, Appl. Phys. Lett. 86, 031106 (2005).
    [CrossRef]
  8. R. Quidant, D. Petrov, and G. Badenes, Opt. Lett. 30, 1009 (2005).
    [CrossRef] [PubMed]
  9. T. Cizmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, Appl. Phys. Lett. 86, 174101 (2005).
    [CrossRef]
  10. T. Cizmár, M. Siler, and P. Zemánek, Appl. Phys. B 84, 197 (2006).
    [CrossRef]
  11. M. Siler, T. Cizmár, M. Serý, and P. Zemánek, Appl. Phys. B 84, 157 (2006).
    [CrossRef]
  12. T. Cizmár, M. Siler, M. Serý, P. Zemánek, and V. Garcés, Phys. Rev. B 74, 035105 (2006).
    [CrossRef]
  13. C. D. Mellor, T. A. Fennerty, and C. D. Bain, Opt. Express 14, 10079 (2006).
    [CrossRef] [PubMed]
  14. P. J. Reece, V. Garcés-Chávez, and K. Dholakia, Appl. Phys. Lett. 88, 221116 (2006).
    [CrossRef]
  15. P. J. Reece, E. M. Wright, and K. Dholakia, Phys. Rev. Lett. 98, 203902 (2007).
    [CrossRef] [PubMed]
  16. S. Kawata and T. Tani, Opt. Lett. 21, 1768 (1996).
    [CrossRef] [PubMed]
  17. L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J. Luff, Appl. Phys. Lett. 76, 1993 (2000).
    [CrossRef]
  18. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, J. Lightwave Technol. 18, 388 (2000).
    [CrossRef]
  19. E. Almaas and I. Brevik, J. Opt. Soc. Am. B 12, 2429 (1995).
    [CrossRef]
  20. J. Y. Walz, Appl. Opt. 38, 5319 (1999).
    [CrossRef]
  21. G. Brambilla, V. Finazzi, and D. J. Richardson, Opt. Express 12, 2258 (2004).
    [CrossRef] [PubMed]
  22. L. Tong, J. Lou, and E. Mazur, Opt. Express 12, 1025 (2004).
    [CrossRef] [PubMed]
  23. K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, Opt. Commun. 239, 227 (2004).
    [CrossRef]
  24. S. Gaugiran, S. Getin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Derouard, Opt. Express 13, 6956 (2005).
    [CrossRef] [PubMed]

2007

P. J. Reece, E. M. Wright, and K. Dholakia, Phys. Rev. Lett. 98, 203902 (2007).
[CrossRef] [PubMed]

2006

T. Cizmár, M. Siler, and P. Zemánek, Appl. Phys. B 84, 197 (2006).
[CrossRef]

M. Siler, T. Cizmár, M. Serý, and P. Zemánek, Appl. Phys. B 84, 157 (2006).
[CrossRef]

T. Cizmár, M. Siler, M. Serý, P. Zemánek, and V. Garcés, Phys. Rev. B 74, 035105 (2006).
[CrossRef]

C. D. Mellor, T. A. Fennerty, and C. D. Bain, Opt. Express 14, 10079 (2006).
[CrossRef] [PubMed]

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

2005

2004

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

G. Brambilla, V. Finazzi, and D. J. Richardson, Opt. Express 12, 2258 (2004).
[CrossRef] [PubMed]

L. Tong, J. Lou, and E. Mazur, Opt. Express 12, 1025 (2004).
[CrossRef] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, Opt. Commun. 239, 227 (2004).
[CrossRef]

2003

M. J. Lang and S. M. Block, Am. J. Phys. 71, 201 (2003).
[CrossRef]

2000

L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J. Luff, Appl. Phys. Lett. 76, 1993 (2000).
[CrossRef]

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, J. Lightwave Technol. 18, 388 (2000).
[CrossRef]

1999

Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh, Nature 399, 446 (1999).
[CrossRef] [PubMed]

J. Y. Walz, Appl. Opt. 38, 5319 (1999).
[CrossRef]

1996

1995

1992

1987

A. Ashkin, J. M. Dziedic, and T. Yamane, Nature 330, 769 (1987).
[CrossRef] [PubMed]

Am. J. Phys.

M. J. Lang and S. M. Block, Am. J. Phys. 71, 201 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. B

T. Cizmár, M. Siler, and P. Zemánek, Appl. Phys. B 84, 197 (2006).
[CrossRef]

M. Siler, T. Cizmár, M. Serý, and P. Zemánek, Appl. Phys. B 84, 157 (2006).
[CrossRef]

Appl. Phys. Lett.

T. Cizmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, Appl. Phys. Lett. 86, 174101 (2005).
[CrossRef]

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J. Luff, Appl. Phys. Lett. 76, 1993 (2000).
[CrossRef]

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nature

A. Ashkin, J. M. Dziedic, and T. Yamane, Nature 330, 769 (1987).
[CrossRef] [PubMed]

Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh, Nature 399, 446 (1999).
[CrossRef] [PubMed]

Opt. Commun.

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, Opt. Commun. 239, 227 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

T. Cizmár, M. Siler, M. Serý, P. Zemánek, and V. Garcés, Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Phys. Rev. Lett.

P. J. Reece, E. M. Wright, and K. Dholakia, Phys. Rev. Lett. 98, 203902 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental apparatus: a CW laser launches light into a subwavelength optical wire immersed in a water suspension of polystyrene spheres with 3 μ m diameters. A microscope with 20 × magnifying objective is placed on top of the suspension, and images are collected via a CCD camera connected to a PC.

Fig. 2
Fig. 2

Ten consecutive photos of 3 μ m polystyrene particles propelled along a subwavelength optical wire with 0.95 μ m diameter. Images were taken at 1 s intervals. Letters A–E indicate particles considered for velocity evaluation.

Fig. 3
Fig. 3

E-field distribution in a subwavelength optical wire (continuous) and planar waveguides (dashed). The SWOW diameter was 0.95 μ m . The waveguide width and depth were assumed to be 3 μ m and 1 μ m for the glass waveguide and 1 μ m and 0.2 μ m for the Si 3 N 4 waveguide, repectively. The E-field has been normalized per unit power.

Fig. 4
Fig. 4

(a) E-field distribution in subwavelength optical wires SWOW calculated at λ = 1.047 μ m for different diameters, reported in microns in the graph. (b) E-field at the interface between SWOW and water. The E-field has been normalized per unit power.

Metrics