Abstract

A novel scheme for carrying out all-optical intensity differentiation is proposed and demonstrated based on the cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA). Because of the XGM, the mathematical definition of differentiation can be expressed by the combined power of the amplified pump pulse and the delayed modulated probe pulse at the output of the SOA. The final waveform and error evolution versus relative time delay between two pulses is investigated. Interestingly enough, it is shown that the acquisition of good differentiation is possible under zero time delay. A further study of zero time delay has been performed for various data rates and shows that the carrier recovery time of the SOA is a speed-limiting factor of the scheme.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Park, J. Azaña, and R. Slavík, Opt. Lett. 32, 710 (2007).
    [CrossRef] [PubMed]
  2. N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
    [CrossRef]
  3. Z. Li, S. Zhang, J. M. V'azquez, Y. Liu, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, presented at the Symposium of the IEEE/LEOS, Benelux Chapter, Eindhoven (2006).
  4. M. Kulishov and J. Azaña, Opt. Lett. 30, 2700 (2005).
    [CrossRef] [PubMed]
  5. J. Azana and M. Kulishov, Electron. Lett. 41, 1368 (2005).
    [CrossRef]
  6. R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, Opt. Express 14, 10699 (2006).
    [CrossRef] [PubMed]
  7. J. Xu, X. Zhang, J. Dong, D. Liu, and D. Huang, Opt. Lett. 32, 1872 (2007).
    [CrossRef] [PubMed]
  8. Q. Wang, F. Zeng, S. Blais, and J. Yao, Opt. Lett. 31, 3083 (2006).
    [CrossRef] [PubMed]
  9. G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
    [CrossRef]
  10. C. Yan, Y. Su, L. Yi, L. Leng, X. Tian, X. Xu, and Y. Tian, IEEE Photon. Technol. Lett. 18, 2368 (2006).
    [CrossRef]

2007

2006

2005

M. Kulishov and J. Azaña, Opt. Lett. 30, 2700 (2005).
[CrossRef] [PubMed]

J. Azana and M. Kulishov, Electron. Lett. 41, 1368 (2005).
[CrossRef]

2004

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

1989

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

Electron. Lett.

J. Azana and M. Kulishov, Electron. Lett. 41, 1368 (2005).
[CrossRef]

IEEE J. Quantum Electron.

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Yan, Y. Su, L. Yi, L. Leng, X. Tian, X. Xu, and Y. Tian, IEEE Photon. Technol. Lett. 18, 2368 (2006).
[CrossRef]

Opt. Commun.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Z. Li, S. Zhang, J. M. V'azquez, Y. Liu, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, presented at the Symposium of the IEEE/LEOS, Benelux Chapter, Eindhoven (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Operating principle and experimental setup of the scheme. The waveform evolutions of λ C (top, blue) and λ P (bottom, magenta) at points A and B are shown by insets (a) and (b). Inset (c) shows the final output, which is the combination of λ C and λ P .

Fig. 2
Fig. 2

Top, measured differentiation results (middle) for Δ t = 2.5 ps with 20 Gbits s super-Gaussian and Gaussian input signals of fixed data “1110 1100 1000 1010”; bottom, calculated differentiation of the top traces.

Fig. 3
Fig. 3

Error versus Δ t with 20 Gbits s (a) super-Gaussian and (b) Gaussian input signals. Insets (c) and (d) shows the amplified control signal (middle) and modulated probe signal (bottom) with super-Gaussian or Gaussian input signals (top).

Fig. 4
Fig. 4

Error versus data rate for Δ t = 0 with 2 23 1 PRBS input data. 1, input ED; 2, differentiation ED; 3, enlarged differentiation ED.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Sum ( t ) = c Δ t ( f ( t ) f ( t Δ t ) Δ t ) + I 1 ,
Sum ( t ) d ( d f ( t ) d t ) + e ,
Error = 1 T T y c ( t ) y m ( t ) d t ,

Metrics