Abstract

We present a theoretical study of a new application of a simple π-phase-shifted fiber Bragg grating (PSFBG) in transmission mode as a high-speed optical temporal integrator. The PSFBG consists of two concatenated identical uniform FBGs with a π phase shift between them. When the reflectivities of the FBGs are extremely close to 100%, the transmissive PSFBG can perform the time integral of the complex envelope of an arbitrary input optical signal with high accuracy. As an example, the integrator is numerically shown to be able to convert an input Gaussian pulse into an optical step signal.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. N. Q. Ngo and L. N. Binh, Opt. Commun. 119, 390 (1995).
    [CrossRef]
  2. N. Q. Ngo and L. N. Binh, J. Lightwave Technol. 24, 563 (2006).
    [CrossRef]
  3. N. Q. Ngo, Appl. Opt. 45, 6785 (2006).
    [CrossRef] [PubMed]
  4. G. S. Pandian and F. E. Seraji, IEE Proc.-J: Optoelectron. 138, 235 (1991).
    [CrossRef]
  5. G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 2nd. ed. (Addison-Wesley, 1990).
  6. W.J.Tompkins and J.G.Webster, eds., Design of Microcomputers-Based Medical Instrumentation (Prentice-Hall, 1981), Chap. 3.
  7. N. Q. Ngo and L. N. Binh, Appl. Opt. 46, 3546 (2007).
    [CrossRef] [PubMed]
  8. R. Kashyap, Fiber Bragg Gratings (Academic Press, 1999).
  9. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, Opt. Express 15, 371 (2007).
    [CrossRef] [PubMed]
  10. M. Kulishov and J. Azaña, Opt. Express 15, 6152 (2007).
    [CrossRef] [PubMed]
  11. M. Kulishov, J. M. Laniel, N. Bélanger, J. Azaña, and D. V. Plant, Opt. Express 13, 3068 (2005).
    [CrossRef] [PubMed]
  12. J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, IEEE Photon. Technol. Lett. 14, 1309 (2002).
    [CrossRef]
  13. N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
    [CrossRef]
  14. M. Kulishov and J. Azaña, Opt. Lett. 30, 2700 (2005).
    [CrossRef] [PubMed]

2007

2006

2005

2004

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

2002

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, IEEE Photon. Technol. Lett. 14, 1309 (2002).
[CrossRef]

1995

N. Q. Ngo and L. N. Binh, Opt. Commun. 119, 390 (1995).
[CrossRef]

1991

G. S. Pandian and F. E. Seraji, IEE Proc.-J: Optoelectron. 138, 235 (1991).
[CrossRef]

Appl. Opt.

IEE Proc.-J: Optoelectron.

G. S. Pandian and F. E. Seraji, IEE Proc.-J: Optoelectron. 138, 235 (1991).
[CrossRef]

IEEE Photon. Technol. Lett.

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, IEEE Photon. Technol. Lett. 14, 1309 (2002).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

N. Q. Ngo and L. N. Binh, Opt. Commun. 119, 390 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. Kashyap, Fiber Bragg Gratings (Academic Press, 1999).

G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 2nd. ed. (Addison-Wesley, 1990).

W.J.Tompkins and J.G.Webster, eds., Design of Microcomputers-Based Medical Instrumentation (Prentice-Hall, 1981), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a transmissive PSFBG as an optical temporal integrator.

Fig. 2
Fig. 2

Transmission (a) and phase (b) responses of the transmissive-PSFBG-based integrator with r = 0.999 , 0.9999 , 1.0 . The normalized frequency is ω T ( 2 π ) .

Fig. 3
Fig. 3

(a) Integrated pulses by the integrator with various r values when processing an input dark-soliton pulse with FWHM = 100 T . (b) TAE values of the integrator with various r values versus the FWHM of an input dark-soliton pulse.

Fig. 4
Fig. 4

(a) Input Gaussian pulse with various FWHM values. (b) Integrated pulses with r = 1.0 for various FWHM values. (c) Integrated pulses with various r values for FWHM = 5 T .

Tables (1)

Tables Icon

Table 1 Energy Efficiency (EF) and TAE Depend on the r Value of the Integrator as well as the FWHM of the Input Dark-Soliton Pulse

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H ( ω ) = { exp ( j ω T 2 ) ( j ω T ) ; π ω T < 0 exp ( j ω T 2 ) ( + j ω T ) ; 0 < ω T π
T PSFBG = T FBG T φ T FBG ,
T 11 = T 22 * = [ cosh ( γ l ) j ( σ γ ) sinh ( γ l ) ] exp [ j ( ω τ + σ l ) ] ,
T 12 = T 21 * = j ( κ γ ) sinh ( γ l ) exp [ j ( ω τ + σ l ) ] ,
T φ , 11 = exp ( j φ 2 ) , T φ , 22 = exp ( j φ 2 ) , T φ , 12 = T φ , 21 = 0 .
H S ( ω ) = S ( ω ) E in ( ω ) = 1 T PSFBG , 22 ,
H S ( z ) = [ cosh 2 [ arctanh ( r ) ] ] 1 1 r 2 z 1 ,

Metrics