Abstract

We experimentally demonstrate the stripe (or roll) patterns in a broad-aperture degenerate optical parametric oscillator in a plane-mirror minicavity. The stabilization of stripes is achieved by seed injection at a subharmonic frequency. We measure the temporal spectra of the stripe pattern and obtain the 1f-like noise spectra.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. L. Oppo, M. Brambilla, and L. A. Lugiato, Phys. Rev. A 49, 2028 (1994).
    [CrossRef] [PubMed]
  2. K. Staliunas, J. Mod. Opt. 42, 1261 (1995).
    [CrossRef]
  3. S. Longhi and A. Geraci, Phys. Rev. A 54, 4581 (1996).
    [CrossRef] [PubMed]
  4. G. J. de Valcárcel, K. Staliunas, E. Roldán, and V. J. Sánchez-Morcillo, Phys. Rev. A 54, 1609 (1996).
    [CrossRef] [PubMed]
  5. V. B. Taranenko, K. Staliunas, and C. O. Weiss, Phys. Rev. Lett. 81, 2236 (1998).
    [CrossRef]
  6. M. Vaupel, A. Maitre, and C. Fabre, Phys. Rev. Lett. 83, 5278 (1999).
    [CrossRef]
  7. S. Ducci, N. Treps, A. Maitre, and C. Fabre, Phys. Rev. A 64, 023803 (2001).
    [CrossRef]
  8. M. Shelton and D. P. West, Opt. Express 9, 16 (2001).
    [CrossRef] [PubMed]
  9. M. Peckus, K. Staliunas, M. Saffman, G. Slekys, V. Sirutkaitis, V. Smilgevicius, and R. Grigonis, Opt. Commun. 251, 165 (2005).
    [CrossRef]
  10. K. Staliunas, Phys. Rev. Lett. 81, 81 (1998).
    [CrossRef]
  11. A. J. Scroggie, D. Gomila, W. J. Firth, and G.-L. Oppo, Appl. Phys. B 81, 963 (2005).
    [CrossRef]
  12. P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497 (1981).
    [CrossRef]
  13. M. B. Weissman, Rev. Mod. Phys. 60, 538 (1988).
    [CrossRef]
  14. K. Staliunas, Int. J. Bifurcation Chaos Appl. Sci. Eng. 11, 2845 (2001).
    [CrossRef]
  15. K. Staliunas, Phys. Rev. E 64, 066129 (2001).
    [CrossRef]

2005 (2)

M. Peckus, K. Staliunas, M. Saffman, G. Slekys, V. Sirutkaitis, V. Smilgevicius, and R. Grigonis, Opt. Commun. 251, 165 (2005).
[CrossRef]

A. J. Scroggie, D. Gomila, W. J. Firth, and G.-L. Oppo, Appl. Phys. B 81, 963 (2005).
[CrossRef]

2001 (4)

K. Staliunas, Int. J. Bifurcation Chaos Appl. Sci. Eng. 11, 2845 (2001).
[CrossRef]

K. Staliunas, Phys. Rev. E 64, 066129 (2001).
[CrossRef]

S. Ducci, N. Treps, A. Maitre, and C. Fabre, Phys. Rev. A 64, 023803 (2001).
[CrossRef]

M. Shelton and D. P. West, Opt. Express 9, 16 (2001).
[CrossRef] [PubMed]

1999 (1)

M. Vaupel, A. Maitre, and C. Fabre, Phys. Rev. Lett. 83, 5278 (1999).
[CrossRef]

1998 (2)

V. B. Taranenko, K. Staliunas, and C. O. Weiss, Phys. Rev. Lett. 81, 2236 (1998).
[CrossRef]

K. Staliunas, Phys. Rev. Lett. 81, 81 (1998).
[CrossRef]

1996 (2)

S. Longhi and A. Geraci, Phys. Rev. A 54, 4581 (1996).
[CrossRef] [PubMed]

G. J. de Valcárcel, K. Staliunas, E. Roldán, and V. J. Sánchez-Morcillo, Phys. Rev. A 54, 1609 (1996).
[CrossRef] [PubMed]

1995 (1)

K. Staliunas, J. Mod. Opt. 42, 1261 (1995).
[CrossRef]

1994 (1)

G. L. Oppo, M. Brambilla, and L. A. Lugiato, Phys. Rev. A 49, 2028 (1994).
[CrossRef] [PubMed]

1988 (1)

M. B. Weissman, Rev. Mod. Phys. 60, 538 (1988).
[CrossRef]

1981 (1)

P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497 (1981).
[CrossRef]

Appl. Phys. B (1)

A. J. Scroggie, D. Gomila, W. J. Firth, and G.-L. Oppo, Appl. Phys. B 81, 963 (2005).
[CrossRef]

Int. J. Bifurcation Chaos Appl. Sci. Eng. (1)

K. Staliunas, Int. J. Bifurcation Chaos Appl. Sci. Eng. 11, 2845 (2001).
[CrossRef]

J. Mod. Opt. (1)

K. Staliunas, J. Mod. Opt. 42, 1261 (1995).
[CrossRef]

Opt. Commun. (1)

M. Peckus, K. Staliunas, M. Saffman, G. Slekys, V. Sirutkaitis, V. Smilgevicius, and R. Grigonis, Opt. Commun. 251, 165 (2005).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (4)

G. L. Oppo, M. Brambilla, and L. A. Lugiato, Phys. Rev. A 49, 2028 (1994).
[CrossRef] [PubMed]

S. Ducci, N. Treps, A. Maitre, and C. Fabre, Phys. Rev. A 64, 023803 (2001).
[CrossRef]

S. Longhi and A. Geraci, Phys. Rev. A 54, 4581 (1996).
[CrossRef] [PubMed]

G. J. de Valcárcel, K. Staliunas, E. Roldán, and V. J. Sánchez-Morcillo, Phys. Rev. A 54, 1609 (1996).
[CrossRef] [PubMed]

Phys. Rev. E (1)

K. Staliunas, Phys. Rev. E 64, 066129 (2001).
[CrossRef]

Phys. Rev. Lett. (3)

V. B. Taranenko, K. Staliunas, and C. O. Weiss, Phys. Rev. Lett. 81, 2236 (1998).
[CrossRef]

M. Vaupel, A. Maitre, and C. Fabre, Phys. Rev. Lett. 83, 5278 (1999).
[CrossRef]

K. Staliunas, Phys. Rev. Lett. 81, 81 (1998).
[CrossRef]

Rev. Mod. Phys. (2)

P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497 (1981).
[CrossRef]

M. B. Weissman, Rev. Mod. Phys. 60, 538 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Illustration of pattern formation in DOPOs. The parabola represents the spatial dispersion curve (dependence of the longitudinal component of the wavenumber k on the transversal one k ) for a given (subharmonic) frequency. The resonator tuning leads to the vertical shift of the longitudinal modes (dashed lines) and results in off-axis emission (open circles on the parabola) responsible for the stripe formation. In addition to degenerate stripes, nondegenerate stripes are also possible (pair filled circles) with frequencies symmetrically shifted. Insets (right) illustrate the forward-propagating field configuration in the resonator.

Fig. 2
Fig. 2

Experimentally observed stripe pattern in the OPO (a, b) without injection and (c, d) with weak injection in (a, c) the near field and (b, d) the far field domains. The doubled character of the far fields is an experimental artifact.

Fig. 3
Fig. 3

Experimentally recorded temporal spectra in OPO with week injection: (a) linear-log scale and (b) log-log scale. The dashed lines indicate f 1 and f 1 2 power laws. The log-log spectra contain the right part as well as the mirror-reflected left part of spectra (with respect to subharmonics frequencies) for three realizations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t A = A + γ A * + v A A 2 A + i Δ A + i 2 A ,
t a ± = a ± + γ a * ± i ω a ± a ± ( a ± 2 + 2 a 2 ) ,

Metrics