Abstract

We observe dipole-like gap solitons in two-dimensional waveguide lattices optically induced with a self-defocusing nonlinearity. Under appropriate conditions, two mutually coherent input beams excited in neighboring lattice sites evolve into a self-trapped state, whose spatial power spectrum and stability depend strongly on the initial excitation conditions. Our experimental observations are compared with numerical simulations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13, 794 (1988).
    [CrossRef] [PubMed]
  2. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998).
    [CrossRef]
  3. Y. S. Kivshar, Opt. Lett. 18, 1147 (1993).
    [CrossRef] [PubMed]
  4. J. Fleischer, M. Segev, N. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).
    [CrossRef] [PubMed]
  5. F. Chen, M. Stepic, C. Rüter, D. Runde, D. Kip, V. Shandarov, O. Manela, and M. Segev, Opt. Express 13, 4314 (2005).
    [CrossRef] [PubMed]
  6. G. Bartal, O. Cohen, O. Manela, M. Segev, J. W. Fleischer, R. Pezer, and H. Buljan, Opt. Lett. 31, 483 (2006).
    [CrossRef] [PubMed]
  7. D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, Phys. Rev. Lett. 92, 093904 (2004).
    [CrossRef] [PubMed]
  8. D. Neshev, A. A. Sukhorukov, B. Hanna, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 93, 083905 (2004).
    [CrossRef] [PubMed]
  9. C. Lou, X. Wang, J. Xu, Z. Chen, and J. Yang, Phys. Rev. Lett. 98, 213903 (2007).
    [CrossRef] [PubMed]
  10. Z. Chen and K. McCarthy, Opt. Lett. 27, 2019 (2002).
    [CrossRef]
  11. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, Phys. Rev. Lett. 92, 123902 (2004).
    [CrossRef] [PubMed]
  12. J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, Stud. Appl. Math. 113, 389 (2004).
    [CrossRef]
  13. D. Träger, R. Fischer, D. N. Neshev, A. A. Sukhorukov, C. Denz, W. Królikowski, and Y. S. Kivshar, Opt. Express 14, 1913 (2006).
    [CrossRef] [PubMed]
  14. P. G. Kevrekidis, H. Susanto, and Z. Chen, Phys. Rev. E 74, 066606 (2006).
    [CrossRef]

2007

C. Lou, X. Wang, J. Xu, Z. Chen, and J. Yang, Phys. Rev. Lett. 98, 213903 (2007).
[CrossRef] [PubMed]

2006

2005

2004

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, Phys. Rev. Lett. 92, 123902 (2004).
[CrossRef] [PubMed]

J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, Stud. Appl. Math. 113, 389 (2004).
[CrossRef]

D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, Phys. Rev. Lett. 92, 093904 (2004).
[CrossRef] [PubMed]

D. Neshev, A. A. Sukhorukov, B. Hanna, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 93, 083905 (2004).
[CrossRef] [PubMed]

2003

J. Fleischer, M. Segev, N. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).
[CrossRef] [PubMed]

2002

1998

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998).
[CrossRef]

1993

1988

Nature

J. Fleischer, M. Segev, N. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. E

P. G. Kevrekidis, H. Susanto, and Z. Chen, Phys. Rev. E 74, 066606 (2006).
[CrossRef]

Phys. Rev. Lett.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998).
[CrossRef]

D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, Phys. Rev. Lett. 92, 093904 (2004).
[CrossRef] [PubMed]

D. Neshev, A. A. Sukhorukov, B. Hanna, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 93, 083905 (2004).
[CrossRef] [PubMed]

C. Lou, X. Wang, J. Xu, Z. Chen, and J. Yang, Phys. Rev. Lett. 98, 213903 (2007).
[CrossRef] [PubMed]

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, Phys. Rev. Lett. 92, 123902 (2004).
[CrossRef] [PubMed]

Stud. Appl. Math.

J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, Stud. Appl. Math. 113, 389 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Lattice pattern obtained from experiment with the two left (two right) circles marking the diagonal (vertical) excitation of the probe beam. (b) Fourier spectrum of (a) with dashed lines marking the first BZ. (c) Band structure for the first Bloch band.

Fig. 2
Fig. 2

Experimental results on IP (a), (b) and OOP (c), (d) dipole-like gap solitons under diagonal excitation. Shown are output patterns (top), corresponding Fourier spectra (middle), and interferograms (bottom) for linear (a), (c) and nonlinear (b), (d) propagation.

Fig. 3
Fig. 3

Numerical results obtained by using parameters corresponding to those of Fig. 2. Bottom row: simulation to a longer propagation distance of 40 mm (i.e., 4 times longer than the crystal length).

Fig. 4
Fig. 4

Experimental (rows 1, 2) and numerical (row 3) results on IP (a), (b) and OOP (c), (d) dipole-like gap solitons under vertical excitation. Shown are output patterns (row 1) and corresponding spectra (rows 2, 3) for linear (a), (c) and nonlinear (b), (d) propagation.

Fig. 5
Fig. 5

Soliton solutions (top) and stability curves (bottom) for nearest IP (a) and OOP (b), and next-to-nearest IP (c) and OOP (d) dipole gap solitons. Zero growth rates in (a), (d) indicate the stable regions of the dipole solutions.

Metrics