Abstract

We have demonstrated a simple, high-energy, narrow spectral bandwidth optical parametric oscillator (OPO) by use of a large aperture periodically poled Mg-doped LiNbO3 device with a volume Bragg grating (VBG). A free-running degenerate OPO pumped by a Q-switched 1.064μm Nd:YAG laser exhibits maximum output pulse energy of 110mJ with high slope efficiency of 75% around room temperature. Broad spectral bandwidth (Δλ100nm) around the degeneracy wavelength was suppressed by using a VBG as an output coupler. Up to 61mJ of the output pulse energy with narrowed spectral bandwidth of less than 1.4nm was obtained at the degeneracy wavelength of 2.128μm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. F. Ganikhanov, T. Caughey, and K. L. Vodopyanov, J. Opt. Soc. Am. B 18, 818 (2001).
    [CrossRef]
  2. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, and M. M. Fejer, Opt. Lett. 29, 1912 (2004).
    [CrossRef] [PubMed]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  4. S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).
    [CrossRef]
  5. M. Missey, V. Dominic, P. Powers, and K. Schepler, Opt. Lett. 25, 248 (2000).
    [CrossRef]
  6. M. J. Missey, V. Dominic, L. E. Myers, and R. C. Eckartdt, Opt. Lett. 23, 664 (1998).
    [CrossRef]
  7. J. Hellström, V. Pasiskevicius, H. Karlsson, and F. Laurell, Opt. Lett. 25, 174 (2000).
    [CrossRef]
  8. H. Ishizuki, I. Shoji, and T. Taira, Appl. Phys. Lett. 82, 4062 (2003).
    [CrossRef]
  9. H. Ishizuki and T. Taira, Opt. Lett. 30, 2918 (2005).
    [CrossRef] [PubMed]
  10. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, Opt. Lett. 31, 3149 (2006).
    [CrossRef] [PubMed]
  11. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, Appl. Opt. 38, 619 (1999).
    [CrossRef]
  12. M. Henriksson, L. Sjöqvist, V. Pasiskevicius, and F. Laurell, Appl. Phys. B 86, 497 (2007).
    [CrossRef]
  13. J. E. Bjorkholm, IEEE J. Quantum Electron. 7, 109 (1971).
    [CrossRef]
  14. O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L'Huiller, Appl. Phys. B 86, 111 (2007).
    [CrossRef]
  15. G. Venus, L. Glebov, V. Rotar, V. Smirnov, P. Crump, and J. Farmer, Proc. SPIE 6216, 621602 (2006).
    [CrossRef]

2007 (2)

M. Henriksson, L. Sjöqvist, V. Pasiskevicius, and F. Laurell, Appl. Phys. B 86, 497 (2007).
[CrossRef]

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L'Huiller, Appl. Phys. B 86, 111 (2007).
[CrossRef]

2006 (2)

G. Venus, L. Glebov, V. Rotar, V. Smirnov, P. Crump, and J. Farmer, Proc. SPIE 6216, 621602 (2006).
[CrossRef]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, Opt. Lett. 31, 3149 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

2003 (1)

H. Ishizuki, I. Shoji, and T. Taira, Appl. Phys. Lett. 82, 4062 (2003).
[CrossRef]

2001 (1)

2000 (2)

1999 (1)

1998 (1)

1995 (1)

1979 (1)

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).
[CrossRef]

1971 (1)

J. E. Bjorkholm, IEEE J. Quantum Electron. 7, 109 (1971).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

M. Henriksson, L. Sjöqvist, V. Pasiskevicius, and F. Laurell, Appl. Phys. B 86, 497 (2007).
[CrossRef]

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L'Huiller, Appl. Phys. B 86, 111 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

H. Ishizuki, I. Shoji, and T. Taira, Appl. Phys. Lett. 82, 4062 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).
[CrossRef]

J. E. Bjorkholm, IEEE J. Quantum Electron. 7, 109 (1971).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (6)

Proc. SPIE (1)

G. Venus, L. Glebov, V. Rotar, V. Smirnov, P. Crump, and J. Farmer, Proc. SPIE 6216, 621602 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for an OPO based on a large aperture PPMgLN. EM, cavity end mirror; HS, harmonic separator; PM, pump mirror; VBG, volume Bragg grating; L c , cavity length.

Fig. 2
Fig. 2

Total output energy and conversion efficiency of degenerate PPMgLN OPO with a 40% reflection OM output coupler at free-running operation. The solid line is least-squares linear fit to the experimental data. The inset graph shows the OPO output peak wavelength on the holder temperature around the 2 μ m region. The dotted curve presents a tuning curve calculated by the Sellmeier equation with the QPM period of 32.3 μ m .

Fig. 3
Fig. 3

Output spectra from the large aperture PPMgLN OPO with VBG or OM around the degeneracy point. Inset graph shows the typical output spectra of the OPO with VBG output coupler at output energy of 30 and 50 mJ .

Fig. 4
Fig. 4

Output energy versus incident pump energy of PPMgLN OPOs. Open triangles, free-running OPO; open circles, OPO ( θ = 0 ° ) with VBG, filled squares, OPO ( θ 3.5 ° ) with VBG. The inset shows typical parasitic oscillation behavior monitored by SFG spectra between pump and 2 μ m signals at 30 mJ output energy.

Metrics