Abstract

We theoretically propose surface-emitted and collinear phase-matched terahertz (THz)-wave generation in a conventional optical fiber. The third-order nonlinear effect, four-wave mixing (FWM), is used to generate THz waves in an optical fiber. Surface-emitted THz-wave generation via FWM is realized using a single-mode fiber. Perfect phase matching is obtained at 800nm and 1.55μm pumping, and it follows that third-order polarization in an optical fiber has the same phase at any point. In this situation, the optical fiber acts like a phased array antenna of the THz wave. Collinear phase-matching THz waves are obtained under the same conditions as for surface-emitted THz waves, and the THz wave is propagated in the silica cladding of the optical fiber. This is a promising method for realizing a reasonable THz-wave source.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. F. Zernike, Jr. and P. R. Berman, Phys. Rev. Lett. 15, 999 (1965).
    [CrossRef]
  2. T. Yajima and K. Inoue, IEEE J. Quantum Electron. QE-5, 140 (1969).
    [CrossRef]
  3. K. H. Yang, J. R. Morris, P. L. Richards, and Y. R. Shen, Appl. Phys. Lett. 23, 669 (1973).
    [CrossRef]
  4. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, Opt. Lett. 24, 1065 (1999).
    [CrossRef]
  5. Y. Avetisyan and K. Kocharyan, in Conference on Lasers and Electro-Optics, OSA 1999 Technical Digest (Optical Society of America, 1999), pp. 380-381.
  6. Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, Appl. Phys. Lett. 81, 3323 (2002).
    [CrossRef]
  7. Y. Sasaki, Y. Suzuki, K. Suizu, H. Ito, S. Yamaguchi, and M. Imaeda, Jpn. J. Appl. Phys. 45, L367 (2006).
    [CrossRef]
  8. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
    [CrossRef]
  9. D. Cote, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, Appl. Phys. Lett. 75, 3959 (1999).
    [CrossRef]
  10. M. Kress, T. Loffler, S. Eden, M. Thomson, and H. G. Roskos, Opt. Lett. 29, 1120 (2004).
    [CrossRef] [PubMed]
  11. J. A. L'Huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, Appl. Phys. B 86, 185 (2007).
    [CrossRef]
  12. T. Suhara, Y. Avetisyan, and H. Ito, IEEE J. Quantum Electron. 39, 166 (2003).
    [CrossRef]
  13. R. L. Sutherland, Handbook of Nonlinear Optics (Dekker, 2003).
    [CrossRef]
  14. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2007 (1)

J. A. L'Huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, Appl. Phys. B 86, 185 (2007).
[CrossRef]

2006 (1)

Y. Sasaki, Y. Suzuki, K. Suizu, H. Ito, S. Yamaguchi, and M. Imaeda, Jpn. J. Appl. Phys. 45, L367 (2006).
[CrossRef]

2004 (1)

2003 (1)

T. Suhara, Y. Avetisyan, and H. Ito, IEEE J. Quantum Electron. 39, 166 (2003).
[CrossRef]

2002 (1)

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, Appl. Phys. Lett. 81, 3323 (2002).
[CrossRef]

1999 (2)

D. Cote, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, Appl. Phys. Lett. 75, 3959 (1999).
[CrossRef]

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, Opt. Lett. 24, 1065 (1999).
[CrossRef]

1978 (1)

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

1973 (1)

K. H. Yang, J. R. Morris, P. L. Richards, and Y. R. Shen, Appl. Phys. Lett. 23, 669 (1973).
[CrossRef]

1969 (1)

T. Yajima and K. Inoue, IEEE J. Quantum Electron. QE-5, 140 (1969).
[CrossRef]

1965 (1)

F. Zernike, Jr. and P. R. Berman, Phys. Rev. Lett. 15, 999 (1965).
[CrossRef]

Appl. Phys. B (1)

J. A. L'Huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, Appl. Phys. B 86, 185 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

K. H. Yang, J. R. Morris, P. L. Richards, and Y. R. Shen, Appl. Phys. Lett. 23, 669 (1973).
[CrossRef]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, Appl. Phys. Lett. 81, 3323 (2002).
[CrossRef]

D. Cote, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, Appl. Phys. Lett. 75, 3959 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Yajima and K. Inoue, IEEE J. Quantum Electron. QE-5, 140 (1969).
[CrossRef]

T. Suhara, Y. Avetisyan, and H. Ito, IEEE J. Quantum Electron. 39, 166 (2003).
[CrossRef]

J. Appl. Phys. (1)

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Sasaki, Y. Suzuki, K. Suizu, H. Ito, S. Yamaguchi, and M. Imaeda, Jpn. J. Appl. Phys. 45, L367 (2006).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

F. Zernike, Jr. and P. R. Berman, Phys. Rev. Lett. 15, 999 (1965).
[CrossRef]

Other (3)

Y. Avetisyan and K. Kocharyan, in Conference on Lasers and Electro-Optics, OSA 1999 Technical Digest (Optical Society of America, 1999), pp. 380-381.

R. L. Sutherland, Handbook of Nonlinear Optics (Dekker, 2003).
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of (a) energy-conservation diagram and the phase-matching conditions for (b) surface-emitted generation and (c) collinear phase matching.

Fig. 2
Fig. 2

Required pumping wavelength λ 1 (dashed line) and related THz frequency (solid curve) depend on λ 2 = λ 3 for surface-emitted THz-wave generation.

Fig. 3
Fig. 3

Required pumping wavelength λ 1 (dashed line) and related THz-frequency (solid curve) depend on λ 2 = λ 3 for collinear phase-matched THz-wave generation under (a) ω 1 pumping and (b) ω 2 = ω 3 pumping.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ω THz = ± ( ω 1 ω 2 ω 3 ) ,
k 1 k 2 k 3 = 0 ,
k 1 k 2 k 3 ± k THz = 0 ,
λ THz = ± λ 1 λ 2 λ 2 2 λ 1 ,
λ 1 = n 1 2 n 2 λ 2 ,
λ 1 = ± n THz n 1 λ 2 2 n 2 λ 1 λ 1 λ 2 ,
P THz = 16 n THz 5 N 2 2 9 n opt 3 λ THz 3 w ( μ o ε o ) L P 1 P 2 P 3 ,

Metrics