Abstract

We present a novel on-chip method for quantitative two-dimensional differential phase imaging. This technique uses four circular holes (600nm diameter, 1.2μm spacing) arranged in a “plus” pattern that are fabricated in a layer of metal above a complementary metal-oxide semiconductor (CMOS) imaging sensor. The interference pattern of the aperture shifts position with respect to the differential phase of the incident light. By imaging the interference pattern with the CMOS sensor, this method measures amplitude and differential phase (1°μm sensitivity for signal-to-noise ratio 16dB) of the incident light field simultaneously. An application to optical beam profiling is presented; we show the amplitude and differential phase profiles of a Gaussian laser beam and an optical vortex.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Z. Liang, B. Grimm, S. Goelz, and J. F. Bille, J. Opt. Soc. Am. A 11, 1949 (1994).
    [CrossRef]
  2. M. Pluta, Opt. Eng. 32, 3199 (1993).
    [CrossRef]
  3. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
    [CrossRef] [PubMed]
  4. X. Q. Cui, X. Heng, J. G. Wu, Z. Yaqoob, A. Scherer, D. Psaltis, and C. H. Yang, Opt. Lett. 31, 3161 (2006).
    [CrossRef] [PubMed]
  5. J. Hartmann, Astrophys. J. 12, 30 (1900).
    [CrossRef]
  6. X. Heng, X. Q. Cui, D. W. Knapp, J. G. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. H. Yang, Opt. Express 14, 10410 (2006).
    [CrossRef] [PubMed]
  7. Z. S. Sacks, D. Rozas, and G. A. Swartzlander, J. Opt. Soc. Am. B 15, 2226 (1998).
    [CrossRef]
  8. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. H. Yang, Lab Chip 6, 1274 (2006).
    [CrossRef] [PubMed]

2006 (3)

2004 (1)

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef] [PubMed]

1998 (1)

1994 (1)

1993 (1)

M. Pluta, Opt. Eng. 32, 3199 (1993).
[CrossRef]

1900 (1)

J. Hartmann, Astrophys. J. 12, 30 (1900).
[CrossRef]

Astrophys. J. (1)

J. Hartmann, Astrophys. J. 12, 30 (1900).
[CrossRef]

J. Microsc. (1)

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Lab Chip (1)

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. H. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Opt. Eng. (1)

M. Pluta, Opt. Eng. 32, 3199 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Device geometry and principle. (b) SEM image and (c) interference pattern of 600 nm holes with 600 nm spacing. (d), (e) Same plots for holes with 1.2 μ m spacing. (f), (g) Same plots for holes with 2.4 μ m spacing.

Fig. 2
Fig. 2

Device responsivity.

Fig. 3
Fig. 3

Device phase sensitivity.

Fig. 4
Fig. 4

(a) Intensity, (b) u component and (c) v component of differential phase, and (d) vector representation of differential phase of a Gaussian beam. (e)–(h) Same plots for an optical vortex.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x zerofringe = d tan [ arcsin ( λ 2 π ϕ u ) ] ,
ϕ Gauss ( u , v , z ) = ϕ Gauss u u ̂ + ϕ Gauss v v ̂ = k u z [ 1 + ( z 0 z ) 2 ] u ̂ + k v z [ 1 + ( z 0 z ) 2 ] v ̂ ,
ϕ vortex ( u , v , z = 0 ) = m v u 2 + v 2 u ̂ + m u u 2 + v 2 v ̂ ,

Metrics