Abstract

We investigate theoretically the possibility of retrieving the value of the time delay of a semiconductor laser with an external optical feedback from the analysis of its intensity time series. When the feedback rate is moderate and the injection current set such that the laser relaxation-oscillation period is close to the delay, then the time-delay identification becomes extremely difficult, thus improving the security of chaos-based communications using external-cavity lasers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
    [CrossRef] [PubMed]
  2. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
    [CrossRef]
  3. R. Vicente, J. Daudén, P. Colet, and R. Toral, IEEE J. Quantum Electron. 41, 541 (2005).
    [CrossRef]
  4. M. J. Bünner, M. Popp, Th. Meyer, A. Kittel, and J. Parisi, Phys. Rev. E 54, 3082 (1996).
    [CrossRef]
  5. R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, Phys. Rev. Lett. 81, 558 (1998).
    [CrossRef]
  6. M. J. Bünner, A. Kittel, J. Parisi, I. Fischer, and W. Elsaßer, Europhys. Lett. 42, 353 (1998).
    [CrossRef]
  7. M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, and A. Valle, IEE Proc.: Optoelectron. 152, 97 (2005).
    [CrossRef]
  8. R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
    [CrossRef]
  9. V. S. Udaltsov, L. Larger, J. P. Goedgebuer, A. Locquet, and D. S. Citrin, J. Opt. Technol. 72, 373 (2005).
    [CrossRef]

2005 (4)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
[CrossRef]

R. Vicente, J. Daudén, P. Colet, and R. Toral, IEEE J. Quantum Electron. 41, 541 (2005).
[CrossRef]

M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, and A. Valle, IEE Proc.: Optoelectron. 152, 97 (2005).
[CrossRef]

V. S. Udaltsov, L. Larger, J. P. Goedgebuer, A. Locquet, and D. S. Citrin, J. Opt. Technol. 72, 373 (2005).
[CrossRef]

1998 (2)

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, Phys. Rev. Lett. 81, 558 (1998).
[CrossRef]

M. J. Bünner, A. Kittel, J. Parisi, I. Fischer, and W. Elsaßer, Europhys. Lett. 42, 353 (1998).
[CrossRef]

1996 (1)

M. J. Bünner, M. Popp, Th. Meyer, A. Kittel, and J. Parisi, Phys. Rev. E 54, 3082 (1996).
[CrossRef]

1990 (1)

L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[CrossRef] [PubMed]

1980 (1)

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[CrossRef]

Europhys. Lett. (1)

M. J. Bünner, A. Kittel, J. Parisi, I. Fischer, and W. Elsaßer, Europhys. Lett. 42, 353 (1998).
[CrossRef]

IEE Proc.: Optoelectron. (1)

M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, and A. Valle, IEE Proc.: Optoelectron. 152, 97 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[CrossRef]

R. Vicente, J. Daudén, P. Colet, and R. Toral, IEEE J. Quantum Electron. 41, 541 (2005).
[CrossRef]

J. Opt. Technol. (1)

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
[CrossRef]

Phys. Rev. E (1)

M. J. Bünner, M. Popp, Th. Meyer, A. Kittel, and J. Parisi, Phys. Rev. E 54, 3082 (1996).
[CrossRef]

Phys. Rev. Lett. (2)

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, Phys. Rev. Lett. 81, 558 (1998).
[CrossRef]

L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Autocorrelation function and associated time series τ = 5 ns and τ RO = 0.75 ns , and (a1), (a2) γ = 2.5 GHz ; (b1), (b2) γ = 5 GHz ; (c1), (c2) γ = 10 GHz ; and (d1), (d2) γ = 15 GHz . The vertical dashed line indicates τ.

Fig. 2
Fig. 2

Evolution of the location τ W and amplitude ρ W of the maximum autocorrelation peak for τ = 5 ns and τ RO = 0.75 ns , in a window W ( τ ) , as a function of γ. Dashed lines show multiples of τ RO 2 . Dotted–dashed lines show the boundaries of W ( τ ) . The solid line indicates τ.

Fig. 3
Fig. 3

Autocorrelation function and mutual information for τ = 1 ns and τ RO = 0.75 ns . (a1), (a2) γ = 2.5 GHz ; (b1), (b2) γ = 5 GHz ; (c1), (c2) γ = 10 GHz ; and (d1), (d2) γ = 15 GHz . The vertical dashed line indicates τ.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ̇ = 1 2 ( 1 + i α ) ( G 1 τ p ) E + γ e i ω 0 τ E ( t τ ) ,
N ̇ = p J th N τ s G E 2 ,
ρ I ( θ ) = ( I ( t + θ ) I ( t ) ) ( I ( t ) I ( t ) ) ( I ( t ) I ( t ) 2 I ( t + θ ) I ( t ) 2 ) 1 2 ,
I ( θ ) = I ( t ) , I ( t θ ) p ( I ( t ) , I ( t θ ) ) log p ( I ( t ) , I ( t θ ) ) p ( I ( t ) ) p ( I ( t θ ) ) ,

Metrics