Abstract

We present a simple measurement and analysis technique to determine the fraction of optical loss due to both radiation (scattering) and linear absorption in microphotonic components. The method is generally applicable to optical materials in which both nonlinear and linear absorption are present and requires only limited knowledge of absolute optical power levels, material parameters, and the structure geometry. The technique is applied to high-quality-factor (Q=1×106 to Q=5×106) silicon-on-insulator (SOI) microdisk resonators. It is determined that linear absorption can account for more than half of the total optical loss in the high-Q regime of these devices.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. J. Choi, K. D. Djrodjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, IEEE Photon. Technol. Lett. 17, 2101 (2004).
    [CrossRef]
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
    [CrossRef] [PubMed]
  3. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
    [CrossRef] [PubMed]
  4. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, Opt. Express 14, 9203 (2006).
    [CrossRef] [PubMed]
  5. M. Borselli, T. J. Johnson, and O. Painter, Appl. Phys. Lett. 88, 131114 (2006).
    [CrossRef]
  6. M. Borselli, T. J. Johnson, and O. Painter, Opt. Express 13, 1515 (2005).
    [CrossRef] [PubMed]
  7. C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, IEEE Photon. Technol. Lett. 16, 506 (2004).
    [CrossRef]
  8. I. Alvarado-Rodriguez and E. Yablonovitch, J. Appl. Phys. 92, 6399 (2002).
    [CrossRef]
  9. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, Appl. Phys. Lett. 90, 051108 (2007).
    [CrossRef]
  10. M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
    [CrossRef]
  11. G. Cocorullo and I. Rendina, Electron. Lett. 28, 83 (1992).
    [CrossRef]
  12. M. Gorodetsky, A. Pryamikov, and V. Ilchenko, J. Opt. Soc. Am. B 17, 1051 (2000).
    [CrossRef]
  13. P. E. Barclay, K. Srinivasan, and O. Painter, Opt. Express 13, 801 (2005).
    [CrossRef] [PubMed]
  14. R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
    [CrossRef]

2007

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

2006

2005

M. Borselli, T. J. Johnson, and O. Painter, Opt. Express 13, 1515 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef] [PubMed]

P. E. Barclay, K. Srinivasan, and O. Painter, Opt. Express 13, 801 (2005).
[CrossRef] [PubMed]

2004

S. J. Choi, K. D. Djrodjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, IEEE Photon. Technol. Lett. 17, 2101 (2004).
[CrossRef]

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, IEEE Photon. Technol. Lett. 16, 506 (2004).
[CrossRef]

2003

M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
[CrossRef]

2002

I. Alvarado-Rodriguez and E. Yablonovitch, J. Appl. Phys. 92, 6399 (2002).
[CrossRef]

2000

1992

G. Cocorullo and I. Rendina, Electron. Lett. 28, 83 (1992).
[CrossRef]

1987

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Appl. Phys. Lett.

M. Borselli, T. J. Johnson, and O. Painter, Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
[CrossRef]

Electron. Lett.

G. Cocorullo and I. Rendina, Electron. Lett. 28, 83 (1992).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

IEEE Photon. Technol. Lett.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, IEEE Photon. Technol. Lett. 16, 506 (2004).
[CrossRef]

S. J. Choi, K. D. Djrodjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, IEEE Photon. Technol. Lett. 17, 2101 (2004).
[CrossRef]

J. Appl. Phys.

I. Alvarado-Rodriguez and E. Yablonovitch, J. Appl. Phys. 92, 6399 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Nature

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef] [PubMed]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic representation of testing apparatus. GPIB, general purpose interface bus; DAQ, data acquisition. (b) Measured transmission scans at various input powers for a 10 μ m radius Si microdisk. The input powers are 4, 50, and 100 μ W for the blue, green, and red curves, respectively. The fit to the low-power curve yields γ t 2 π = 1.4 × 10 8 Hz , γ β 2 π = 4.2 × 10 8 Hz , and γ e 2 π = 3.3 × 10 7 Hz .

Fig. 2
Fig. 2

Plot of normalized nonlinear absorption versus relative electric field cavity energy along with a linear fit.

Fig. 3
Fig. 3

(a) Plot of thermally induced wavelength shift ( Δ λ th ) versus relative dropped power ( P d ) along with nonlinear and linear absorption model fits. Inset, global slope, Δ λ th P d , versus P d for the same dataset. (b) Measured intrinsic linewidth for the entire family of high-Q WGMs of this microdisk, along with the measured delineation between scattering loss and linear absorption. Intrinsic radiation loss of the WGMs is lumped in with the scattering loss component; however, it is calculated to be negligible for the 10 μ m radius disks studied here. The resonant mode of panel (a) is denoted with an arrow in this plot.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

a c ( s ) = γ e 2 P i ( γ t 2 ) + i ( Δ ω ± γ β 2 ) ,
T = P i + γ e 2 ( a c + a s ) 2 P i .
γ nla ( P d ) = K 0 ( 1 ( T min ( P d ) ) 1 ± ( T min ( P d ) ) ) 1 ,
Δ λ ( P d ) = C ( γ la + γ nla ( P d ) 1 + γ nla ( P d ) ) P d ,

Metrics