Abstract

We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064nm fundamental radiation, an intracavity BaWO4 Raman crystal that generates a first-Stokes laser at 1180nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14W at 590nm is obtained at a pulse repetition frequency of 10kHz.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. M. Kretschmann, F. Heine, G. Huber, and T. Halldorsson, Opt. Lett. 22, 1461 (1997).
    [CrossRef]
  2. R. P. Mildren, M. Convery, H. M. Pask, and J. A. Piper, Opt. Express 12, 785 (2004).
    [CrossRef] [PubMed]
  3. H. M. Pask, S. Myers, J. A. Piper, J. Richards, and T. McKay, Opt. Lett. 28, 435 (2003).
    [CrossRef] [PubMed]
  4. C. He and T. H. Chyba, Opt. Commun. 135, 273 (1997).
    [CrossRef]
  5. H. M. Pask and J. A. Piper, Opt. Lett. 24, 1490 (1999).
    [CrossRef]
  6. J. Simons, H. Pask, P. Dekker, and J. Piper, Opt. Commun. 229, 305 (2004).
    [CrossRef]
  7. R. P. Mildren, H. M. Pask, H. Ogilvy, and J. A. Piper, Opt. Lett. 30, 1500 (2005).
    [CrossRef] [PubMed]
  8. F. Song, C. Zhang, X. Ding, J. Xu, and G. Zhang, Appl. Phys. Lett. 81, 2145 (2002).
    [CrossRef]
  9. N. G. Basov, A. Z. Grasiuk, and I. G. Zubarev, in Raman Spectroscopy: Sixty Years On, Vibrational Spectra and Structure, H.D.Bist, J.R.Durig, and J.F.Sullivan, eds. (Elsevier, 1989), pp. 255-292.
  10. J. T. Murray, W. L. Austin, and R. C. Powell, Opt. Mater. 11, 353 (1999).
    [CrossRef]
  11. P. Cerny, W. Zendzian, and J. Jabczynski, Opt. Commun. 209, 403 (2002).
    [CrossRef]
  12. P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, Prog. Quantum Electron. 28, 113 (2004).
    [CrossRef]
  13. D. Ran, H. Xia, S. Sun, P. Zhao, F. Liu, Z. Ling, W. Ge, H. Zhang, and J. Wang, Cryst. Res. Technol. 41, 1189 (2006).
    [CrossRef]
  14. T. T. Basiev, A. A. Sobol, Y. K. Voronko, and P. G. Zverev, Opt. Mater. 15, 205 (2000).
    [CrossRef]
  15. Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, Opt. Lett. 30, 3335 (2005).
    [CrossRef]

2006 (1)

D. Ran, H. Xia, S. Sun, P. Zhao, F. Liu, Z. Ling, W. Ge, H. Zhang, and J. Wang, Cryst. Res. Technol. 41, 1189 (2006).
[CrossRef]

2005 (2)

2004 (3)

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, Prog. Quantum Electron. 28, 113 (2004).
[CrossRef]

R. P. Mildren, M. Convery, H. M. Pask, and J. A. Piper, Opt. Express 12, 785 (2004).
[CrossRef] [PubMed]

J. Simons, H. Pask, P. Dekker, and J. Piper, Opt. Commun. 229, 305 (2004).
[CrossRef]

2003 (1)

2002 (2)

F. Song, C. Zhang, X. Ding, J. Xu, and G. Zhang, Appl. Phys. Lett. 81, 2145 (2002).
[CrossRef]

P. Cerny, W. Zendzian, and J. Jabczynski, Opt. Commun. 209, 403 (2002).
[CrossRef]

2000 (1)

T. T. Basiev, A. A. Sobol, Y. K. Voronko, and P. G. Zverev, Opt. Mater. 15, 205 (2000).
[CrossRef]

1999 (2)

J. T. Murray, W. L. Austin, and R. C. Powell, Opt. Mater. 11, 353 (1999).
[CrossRef]

H. M. Pask and J. A. Piper, Opt. Lett. 24, 1490 (1999).
[CrossRef]

1997 (2)

Appl. Phys. Lett. (1)

F. Song, C. Zhang, X. Ding, J. Xu, and G. Zhang, Appl. Phys. Lett. 81, 2145 (2002).
[CrossRef]

Cryst. Res. Technol. (1)

D. Ran, H. Xia, S. Sun, P. Zhao, F. Liu, Z. Ling, W. Ge, H. Zhang, and J. Wang, Cryst. Res. Technol. 41, 1189 (2006).
[CrossRef]

Opt. Commun. (3)

P. Cerny, W. Zendzian, and J. Jabczynski, Opt. Commun. 209, 403 (2002).
[CrossRef]

C. He and T. H. Chyba, Opt. Commun. 135, 273 (1997).
[CrossRef]

J. Simons, H. Pask, P. Dekker, and J. Piper, Opt. Commun. 229, 305 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. (2)

T. T. Basiev, A. A. Sobol, Y. K. Voronko, and P. G. Zverev, Opt. Mater. 15, 205 (2000).
[CrossRef]

J. T. Murray, W. L. Austin, and R. C. Powell, Opt. Mater. 11, 353 (1999).
[CrossRef]

Prog. Quantum Electron. (1)

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, Prog. Quantum Electron. 28, 113 (2004).
[CrossRef]

Other (1)

N. G. Basov, A. Z. Grasiuk, and I. G. Zubarev, in Raman Spectroscopy: Sixty Years On, Vibrational Spectra and Structure, H.D.Bist, J.R.Durig, and J.F.Sullivan, eds. (Elsevier, 1989), pp. 255-292.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the diode-side-pumped intracavity actively Q-switched KTP frequency-doubled Nd : YAG Ba W O 4 Raman laser. M1, M2, mirrors; AO, acousto-optic.

Fig. 2
Fig. 2

Average output power at 1180 nm from the intracavity Nd : YAG Ba W O 4 Raman laser with respect to the pump power at PRFs of 10, 15, and 20 kHz .

Fig. 3
Fig. 3

Optical spectra for the actively Q-switched intracavity frequency-doubled Raman laser.

Fig. 4
Fig. 4

Average output power at 590 nm with respect to the pump power at PRFs of 10, 15, and 20 kHz .

Fig. 5
Fig. 5

Typical oscilloscope trace for the yellow laser pulse.

Metrics