Abstract

We have applied techniques developed for IR waveguides to fabricate Ag/polystyrene (PS) -coated hollow glass waveguides (HGWs) for transmission of terahertz radiation. A loss of 0.95dBm at 119μm (2.5THz) was obtained for a 2mm bore, 90cm long Ag/PS HGW. We found that TE modes are supported in HGWs with thin PS films, while hybrid (HE) modes dominate when PS film thickness increases. The lowest losses are obtained for the thicker PS films and the propagation of the HE modes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).
  2. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, Opt. Lett. 31, 308 (2006).
    [CrossRef] [PubMed]
  3. H. Han, H. Park, M. Cho, and J. Kim, Appl. Phys. Lett. 80, 2634 (2002).
    [CrossRef]
  4. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, Jpn. J. Appl. Phys., Part 1 43, 317 (2004).
    [CrossRef]
  5. T. Hidaka, H. Minamide, H. Ito, S. Maeta, and T. Akiyama, Proc. SPIE 5135, 70 (2003).
    [CrossRef]
  6. Y. Gao, N. Guo, B. Gauvreau, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, J. Mater. Res. 21, 2246 (2006).
    [CrossRef]
  7. M. Skorobogatiy, Opt. Lett. 30, 2991 (2005).
    [CrossRef] [PubMed]
  8. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, J. Opt. Soc. Am. B 17, 851 (2000).
    [CrossRef]
  9. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, Appl. Phys. Lett. 76, 1987 (2000).
    [CrossRef]
  10. J. Deibel, K. Wang, M. Escarra, and D. Mittleman, Opt. Express 14, 279 (2006).
    [CrossRef] [PubMed]
  11. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, Opt. Express 12, 5263 (2004).
    [CrossRef] [PubMed]
  12. J. A. Harrington, Infrared Fibers and their Applications (SPIE, 2003).
  13. Y. Abe, Y. Matsuura, Y. W. Shi, H. Uyama, and M. Miyagi, Opt. Lett. 23, 89 (1998).
    [CrossRef]
  14. M. Miyagi, J. Lightwave Technol. LT-3, 303 (1985).
    [CrossRef]
  15. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, Appl. Opt. 22, 1099 (1983).
    [CrossRef] [PubMed]
  16. J. R. Birch, Infrared Phys. 33, 33 (1992).
    [CrossRef]
  17. E. Hecht, Optics (Addison Wesley, 2002).

2006 (3)

2005 (1)

2004 (2)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, Jpn. J. Appl. Phys., Part 1 43, 317 (2004).
[CrossRef]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, Opt. Express 12, 5263 (2004).
[CrossRef] [PubMed]

2003 (1)

T. Hidaka, H. Minamide, H. Ito, S. Maeta, and T. Akiyama, Proc. SPIE 5135, 70 (2003).
[CrossRef]

2002 (1)

H. Han, H. Park, M. Cho, and J. Kim, Appl. Phys. Lett. 80, 2634 (2002).
[CrossRef]

2000 (2)

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, J. Opt. Soc. Am. B 17, 851 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, Appl. Phys. Lett. 76, 1987 (2000).
[CrossRef]

1998 (1)

1992 (1)

J. R. Birch, Infrared Phys. 33, 33 (1992).
[CrossRef]

1985 (1)

M. Miyagi, J. Lightwave Technol. LT-3, 303 (1985).
[CrossRef]

1983 (1)

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Han, H. Park, M. Cho, and J. Kim, Appl. Phys. Lett. 80, 2634 (2002).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, Appl. Phys. Lett. 76, 1987 (2000).
[CrossRef]

Infrared Phys. (1)

J. R. Birch, Infrared Phys. 33, 33 (1992).
[CrossRef]

J. Lightwave Technol. (1)

M. Miyagi, J. Lightwave Technol. LT-3, 303 (1985).
[CrossRef]

J. Mater. Res. (1)

Y. Gao, N. Guo, B. Gauvreau, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, J. Mater. Res. 21, 2246 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys., Part 1 (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, Jpn. J. Appl. Phys., Part 1 43, 317 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (1)

T. Hidaka, H. Minamide, H. Ito, S. Maeta, and T. Akiyama, Proc. SPIE 5135, 70 (2003).
[CrossRef]

Other (3)

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

J. A. Harrington, Infrared Fibers and their Applications (SPIE, 2003).

E. Hecht, Optics (Addison Wesley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Near-IR absorption spectrum of a 1.7 mm bore diameter Ag/PS HGW (top trace, black) is compared with the absorption spectra of an Ag-only HGW (bottom trace, green), a free-standing PS film (second from bottom, blue), and the calculated interference spectrum for a 7.7 μ m thick PS layer on Ag (second from top, red). The vertical scale is offset for clarity.

Fig. 2
Fig. 2

Measured transmission loss plotted as a function of PS film thickness, d ps , for 119 μ m radiation propagating in 1.6 mm (top curve, blue), 1.7 mm (center curve, red), and 2.2 mm (bottom curve, green) bore diameter Ag/PS-coated HGWs.

Fig. 3
Fig. 3

Far-field spatial intensity variation of 119 μ m radiation exiting 90 cm long Ag/PS HGWs. The HGW bore diameter, PS film thickness, and polarization state of the collected radiation are indicated below each image. Images are obtained with either a horizontal (HP) or vertical (VP) wire grid polarizer inserted between the waveguide and camera, or no polarizer (NP).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d d = λ o 2 π n d 2 1 tan 1 [ n d ( n d 2 1 ) 1 4 ] ,
λ m = d ps ( 4 n 2 1 ) m ,
d ps = ( ν ̃ m ν ̃ m 1 ) 1 4 n 2 1 .
α = 1 R 2 a tan ( θ z ) ,

Metrics