Abstract

We demonstrate what we believe to be the first experimental extraordinary optical transmission (EOT) of up to 90%, thanks to a well-identified guided mode that propagates through annular apertures engraved into an optically thick silver layer. In spite of the metal losses, high transmission can be obtained by adjusting the geometrical parameters of the fabricated structure, as was already theoretically demonstrated. To our knowledge, this is the first study showing such a large transmission in the visible range.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Gifford and D. Hall, Appl. Phys. Lett. 81, 4315 (2002).
    [CrossRef]
  2. S. Shinada, J. Hashizume, and F. Koyama, Appl. Phys. Lett. 83, 836 (2003).
    [CrossRef]
  3. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, Appl. Phys. Lett. 75, 3560 (1999).
    [CrossRef]
  4. X. Luo and T. Ishihara, Opt. Express 12, 3055 (2004).
    [CrossRef] [PubMed]
  5. Y. Liu and S. Blair, Opt. Lett. 28, 507 (2003).
    [CrossRef] [PubMed]
  6. S. Garrett, L. Smith, and W. Barnes, J. Mod. Opt. 52, 1105 (2005).
    [CrossRef]
  7. A. Brolo, R. Gordon, B. Leathem, and K. Kavanagh, Langmuir 20, 4813 (2004).
    [CrossRef]
  8. F. I. Baida and D. Van Labeke, Opt. Commun. 209, 17 (2002).
    [CrossRef]
  9. F. I. Baida and D. Van Labeke, Phys. Rev. B 67, 155314 (2003).
    [CrossRef]
  10. J. Salvi, M. Roussey, F. I. Baida, M.-P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, Opt. Lett. 30, 1611 (2005).
    [CrossRef] [PubMed]
  11. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, Phys. Rev. Lett. 94, 033902 (2005).
    [CrossRef] [PubMed]
  12. S. M. Orbons, D. Freeman, B. Luther-Davies, B. C. Gibson, S. T. Huntington, D. N. Jamieson, and A. Roberts, Physica B 394, 176 (2007).
    [CrossRef]
  13. Y. Ekinci, H. Solak, and C. David, Opt. Lett. 32, 172 (2007).
    [CrossRef]
  14. J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, Appl. Phys. Lett. 90, 021104 (2007).
    [CrossRef]
  15. T. Thio, Nat. Phys. 2, 136 (2007).
    [CrossRef]
  16. F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, Appl. Phys. B 79, 1 (2004).
    [CrossRef]
  17. A. Taflove and S. C. Hagness, Computational Electrodynamics, the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2005).
  18. Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, Photonics Nanostruct. Fundam. Appl. 4, 47 (2006).
    [CrossRef]
  19. J.-P. Bérenger, J. Comput. Phys. 114, 185 (1994).
    [CrossRef]
  20. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, J. Opt. Soc. Am. B 19, 765 (2002).
    [CrossRef]
  21. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, Phys. Rev. B 74, 205419 (2006).
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  23. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  24. J. Bravo-Abad, F. García-Vidal, and L. Martín-Moreno, Phys. Rev. Lett. 93, 227401 (2004).
    [CrossRef] [PubMed]

2007

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, Appl. Phys. Lett. 90, 021104 (2007).
[CrossRef]

T. Thio, Nat. Phys. 2, 136 (2007).
[CrossRef]

S. M. Orbons, D. Freeman, B. Luther-Davies, B. C. Gibson, S. T. Huntington, D. N. Jamieson, and A. Roberts, Physica B 394, 176 (2007).
[CrossRef]

Y. Ekinci, H. Solak, and C. David, Opt. Lett. 32, 172 (2007).
[CrossRef]

2006

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, Photonics Nanostruct. Fundam. Appl. 4, 47 (2006).
[CrossRef]

2005

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

S. Garrett, L. Smith, and W. Barnes, J. Mod. Opt. 52, 1105 (2005).
[CrossRef]

J. Salvi, M. Roussey, F. I. Baida, M.-P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, Opt. Lett. 30, 1611 (2005).
[CrossRef] [PubMed]

2004

X. Luo and T. Ishihara, Opt. Express 12, 3055 (2004).
[CrossRef] [PubMed]

A. Brolo, R. Gordon, B. Leathem, and K. Kavanagh, Langmuir 20, 4813 (2004).
[CrossRef]

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, Appl. Phys. B 79, 1 (2004).
[CrossRef]

J. Bravo-Abad, F. García-Vidal, and L. Martín-Moreno, Phys. Rev. Lett. 93, 227401 (2004).
[CrossRef] [PubMed]

2003

Y. Liu and S. Blair, Opt. Lett. 28, 507 (2003).
[CrossRef] [PubMed]

F. I. Baida and D. Van Labeke, Phys. Rev. B 67, 155314 (2003).
[CrossRef]

S. Shinada, J. Hashizume, and F. Koyama, Appl. Phys. Lett. 83, 836 (2003).
[CrossRef]

2002

F. I. Baida and D. Van Labeke, Opt. Commun. 209, 17 (2002).
[CrossRef]

D. Gifford and D. Hall, Appl. Phys. Lett. 81, 4315 (2002).
[CrossRef]

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, J. Opt. Soc. Am. B 19, 765 (2002).
[CrossRef]

1999

M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, Appl. Phys. Lett. 75, 3560 (1999).
[CrossRef]

1994

J.-P. Bérenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Appl. Phys. B

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, Appl. Phys. B 79, 1 (2004).
[CrossRef]

Appl. Phys. Lett.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, Appl. Phys. Lett. 90, 021104 (2007).
[CrossRef]

D. Gifford and D. Hall, Appl. Phys. Lett. 81, 4315 (2002).
[CrossRef]

S. Shinada, J. Hashizume, and F. Koyama, Appl. Phys. Lett. 83, 836 (2003).
[CrossRef]

M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, Appl. Phys. Lett. 75, 3560 (1999).
[CrossRef]

J. Comput. Phys.

J.-P. Bérenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

J. Mod. Opt.

S. Garrett, L. Smith, and W. Barnes, J. Mod. Opt. 52, 1105 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Langmuir

A. Brolo, R. Gordon, B. Leathem, and K. Kavanagh, Langmuir 20, 4813 (2004).
[CrossRef]

Nat. Phys.

T. Thio, Nat. Phys. 2, 136 (2007).
[CrossRef]

Opt. Commun.

F. I. Baida and D. Van Labeke, Opt. Commun. 209, 17 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Photonics Nanostruct. Fundam. Appl.

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, Photonics Nanostruct. Fundam. Appl. 4, 47 (2006).
[CrossRef]

Phys. Rev. B

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, Phys. Rev. B 74, 205419 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

F. I. Baida and D. Van Labeke, Phys. Rev. B 67, 155314 (2003).
[CrossRef]

Phys. Rev. Lett.

J. Bravo-Abad, F. García-Vidal, and L. Martín-Moreno, Phys. Rev. Lett. 93, 227401 (2004).
[CrossRef] [PubMed]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

Physica B

S. M. Orbons, D. Freeman, B. Luther-Davies, B. C. Gibson, S. T. Huntington, D. N. Jamieson, and A. Roberts, Physica B 394, 176 (2007).
[CrossRef]

Other

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

A. Taflove and S. C. Hagness, Computational Electrodynamics, the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM images of the studied AAA (inner diameter d i = 100 nm , outer diameter d o = 200 nm , and period p = 350 nm ) fabricated in a h = 100 nm thick silver layer: (a) top view; (b) 40 ° tilted view.

Fig. 2
Fig. 2

2 × 2 periods of the infinite theoretical periodic structure used for the calculations and deduced from the SEM image of Fig. 1.

Fig. 3
Fig. 3

Experimental setup used for the transmission measurements.

Fig. 4
Fig. 4

Theoretical and experimental transmission spectra through two AAAs having the same period and inner and outer diameters but different areas. Dotted curve, matrix with 30 × 30 periods ( 100 μ m 2 ) ; dashed curve, matrix with 40 × 40 periods ( 190 μ m 2 ) ; solid curve, theoretical transmission spectrum obtained with the infinite object deduced from the SEM image (Fig. 2).

Fig. 5
Fig. 5

Transmission spectra for different directions of polarization of the incident field: 0° (solid curve), 10° (dotted), 20° (dashed), and 30° (dashed–dotted) with respect to the y axis of Fig. 2: (a) theoretical curves; (b) experimental results.

Metrics