Abstract

We describe a new architecture for laser displacement metrology with a drastic reduction in the size and complexity of the optical head. Connected by a single optical fiber, the compact heads are easy to integrate and readily multiplexed to support applications requiring large numbers of sensors. The approach is made possible by modulating the outgoing laser light with a binary random noise code, allowing the detected signals to be discriminated based on their propagation delay. We demonstrate a displacement resolution of 1.1nm rms.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. Crane, Appl. Opt. 8, 538 (1969).
  2. N. Bobroff, Appl. Opt. 26, 2676 (1987).
    [CrossRef] [PubMed]
  3. F. Zhao, R. Diaz, G. Kuan, N. Sigrist, Y. Beregovski, L. Ames, and K. Dutta, Proc. SPIE 4852, 370 (2003).
    [CrossRef]
  4. W. Hou and G. Wilkening, Precis. Eng. 14, 91 (1992).
    [CrossRef]
  5. R. C. Quenelle and L. J. Wuerz, Hewlett-Packard J. 34, 3 (1983).
  6. D. A. Shaddock, "Digitally enhanced heterodyne interferometry," submitted to Opt. Lett.
  7. N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, Appl. Opt. 22, 1382 (1983).
    [CrossRef] [PubMed]
  8. P. G. Halverson and R. E. Spero, J. Opt. A, Pure Appl. Opt. 4, S304 (2002).
    [CrossRef]
  9. O. P. Lay, S. Dubovitsky, R. D. Peters, J. P. Burger, S. W. Ahn, W. H. Steier, H. R. Fetterman, and Y. Chang, Opt. Lett. 28, 890 (2003).
    [CrossRef] [PubMed]

2003 (2)

2002 (1)

P. G. Halverson and R. E. Spero, J. Opt. A, Pure Appl. Opt. 4, S304 (2002).
[CrossRef]

1992 (1)

W. Hou and G. Wilkening, Precis. Eng. 14, 91 (1992).
[CrossRef]

1987 (1)

1983 (2)

N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, Appl. Opt. 22, 1382 (1983).
[CrossRef] [PubMed]

R. C. Quenelle and L. J. Wuerz, Hewlett-Packard J. 34, 3 (1983).

1969 (1)

R. Crane, Appl. Opt. 8, 538 (1969).

Appl. Opt. (3)

Hewlett-Packard J. (1)

R. C. Quenelle and L. J. Wuerz, Hewlett-Packard J. 34, 3 (1983).

J. Opt. A, Pure Appl. Opt. (1)

P. G. Halverson and R. E. Spero, J. Opt. A, Pure Appl. Opt. 4, S304 (2002).
[CrossRef]

Opt. Lett. (1)

Precis. Eng. (1)

W. Hou and G. Wilkening, Precis. Eng. 14, 91 (1992).
[CrossRef]

Proc. SPIE (1)

F. Zhao, R. Diaz, G. Kuan, N. Sigrist, Y. Beregovski, L. Ames, and K. Dutta, Proc. SPIE 4852, 370 (2003).
[CrossRef]

Other (1)

D. A. Shaddock, "Digitally enhanced heterodyne interferometry," submitted to Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Example of a traditional optical head (b) New compact optical head based on range-gated metrology.

Fig. 2
Fig. 2

Experiment schematic.

Fig. 3
Fig. 3

Amplitude of extracted sinusoid (signal amplitude) as a function of demodulation delay. Horizontal line, predicted amplitude level in the absence of correlated signal. Dashed curve, correlation obtained when the target is blocked. Inset, reference peak on linear scales with fine delay sampling.

Fig. 4
Fig. 4

(a) Range-gated metrology measurement, X RGM , and residual, X RGM X PZT , as a function of calibrated PZT displacement. The rms error is 1.1 nm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ X = λ 4 π 1 N demod 1 χ + χ = λ 4 π f out f chip 1 χ + χ ,

Metrics