Abstract

We demonstrate that it is possible to generate high-order optical vortices from a single phase wedge by applying an incident beam with an annular intensity distribution. Various topological charges of optical vortices are realized by a static phase wedge when the position and radius of the annular illumination are changed accordingly.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G.-H. Kim, J.-H. Jeon, K.-H. Ko, H.-J. Moon, J.-H. Lee, and J.-S. Chang, Appl. Opt. 36, 8614 (1997).
    [CrossRef]
  2. V. Shvedov, Ya. Izdebskaya, A. Alekseev, and A. Volyar, Tech. Phys. Lett. 28, 256 (2002).
    [CrossRef]
  3. X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, Appl. Phys. B 86, 209 (2007).
    [CrossRef]
  4. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
    [CrossRef] [PubMed]
  5. Z. S. Sacks, D. Rozas, and G. A. Swartzlander, Jr., J. Opt. Soc. Am. B 15, 2226 (1998).
    [CrossRef]
  6. J. E. Curtis and D. G. Grier, Phys. Rev. Lett. 90, 133901 (2003).
    [CrossRef] [PubMed]
  7. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas'ko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).
    [CrossRef] [PubMed]
  8. Y. Izdebskaya, V. Shvedov, and A. Volyar, Opt. Lett. 30, 2472 (2005).
    [CrossRef] [PubMed]
  9. Y. Izdebskaya, V. Shvedov, and A. Volyar, Opt. Lett. 30, 2530 (2005).
    [CrossRef] [PubMed]
  10. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
    [CrossRef] [PubMed]
  11. J. Lin, X.-C. Yuan, J. Bu, H. L. Chen, Y. Y. Sun, and R. E. Burge, Opt. Lett. 32, 2170 (2007).
    [CrossRef] [PubMed]
  12. M. V. Vasnetsov, V. A. Pas'ko, and M. S. Soskin, New J. Phys. 7, 46 (2005).
    [CrossRef]
  13. J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef] [PubMed]
  14. W. C. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Dholakia, and H. Wang, Appl. Phys. Lett. 85, 5784 (2004).
    [CrossRef]
  15. M. Rioux, R. Tremblay, and P. A. Belanger, Appl. Opt. 17, 1532 (1978).
    [CrossRef] [PubMed]
  16. T. Shiina, K. Yoshida, M. Ito, and Y. Okamura, Appl. Opt. 44, 7467 (2005).
    [CrossRef] [PubMed]

2007 (2)

X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, Appl. Phys. B 86, 209 (2007).
[CrossRef]

J. Lin, X.-C. Yuan, J. Bu, H. L. Chen, Y. Y. Sun, and R. E. Burge, Opt. Lett. 32, 2170 (2007).
[CrossRef] [PubMed]

2005 (4)

2004 (2)

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas'ko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).
[CrossRef] [PubMed]

W. C. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Dholakia, and H. Wang, Appl. Phys. Lett. 85, 5784 (2004).
[CrossRef]

2003 (1)

J. E. Curtis and D. G. Grier, Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef] [PubMed]

2002 (1)

V. Shvedov, Ya. Izdebskaya, A. Alekseev, and A. Volyar, Tech. Phys. Lett. 28, 256 (2002).
[CrossRef]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef] [PubMed]

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

1978 (1)

Appl. Opt. (3)

Appl. Phys. B (1)

X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, Appl. Phys. B 86, 209 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

W. C. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Dholakia, and H. Wang, Appl. Phys. Lett. 85, 5784 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

New J. Phys. (1)

M. V. Vasnetsov, V. A. Pas'ko, and M. S. Soskin, New J. Phys. 7, 46 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

J. E. Curtis and D. G. Grier, Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef] [PubMed]

Tech. Phys. Lett. (1)

V. Shvedov, Ya. Izdebskaya, A. Alekseev, and A. Volyar, Tech. Phys. Lett. 28, 256 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Weight of OAM state as a function of the dimensionless radius when δ 0 [Eq. (3)]. (a) l = 2 , d = 0 ; (b) l = 3 , d = π .

Fig. 2
Fig. 2

Far-field intensity profile produced by the phase wedge with optimal annular illumination. (a) a opt = 2.54 for l = 2 ; (b) a opt = 3.81 for l = 3 .

Fig. 3
Fig. 3

2D phase profile of a double wedge with an annular aperture optimized for the generation of the optical vortex of l = 3 .

Fig. 4
Fig. 4

Experimental setup for the generation of high-order optical vortices and the measurement of the respective topological charges. Elements M1, M2, BS1, and BS2 form a Mach–Zehnder interferometer.

Fig. 5
Fig. 5

Selective generation of high-order optical vortices. (a), (c), (e), l = 2 ; (b), (d), (f), l = 3 . (a), (b) Annular illumination on a single phase wedge. Optimal illumination with W 0 (dashed circle), actual illumination with finite width (white annulus), center of illumination (cross). (c), (d) Far-field intensity distributions of high-order optical vortices embedded in Bessel beams. (e), (f) Interference measurement of topological charges.

Tables (1)

Tables Icon

Table 1 Maximum Normalized Weight of OAM State Obtained at the Optimal Radius a opt When the Width δ 0

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t sw ( r , θ ) = { exp ( i d ) exp ( i k r cos θ ) 0 θ < π 1 π θ < 2 π } ,
t dw ( r , θ ) = { exp ( i d ) exp ( i 0.5 k r cos θ ) 0 θ < π exp ( i 0.5 k r cos θ ) π θ < 2 π } .
P l ( a ; d ; δ ) δ 0 = { 1 exp ( i d ) 2 2 π 2 δ ( 2 a + δ ) a a + δ I o 2 ( sgn ( l ) z ; l ) z d z δ 0 = 1 exp ( i d ) 2 4 π 2 I o 2 ( sgn ( l ) a ; l ) l 2 Z + 1 1 + exp ( i d ) 2 2 π 2 δ ( 2 a + δ ) a a + δ I e 2 ( sgn ( l ) z ; l ) z d z δ 0 = 1 + exp ( i d ) 2 4 π 2 I e 2 ( sgn ( l ) a ; l ) l 2 Z l 0 } ,
d = { ( 2 n + 1 ) π l 2 Z + 1 2 n π l 2 Z l 0 } ,
a opt ( l ) = 1.27 l for small l .

Metrics