Abstract

We demonstrate high-speed complex conjugate artifact (CCA) resolved imaging of human retina in vivo using spectral domain optical coherence tomography. This technique utilizes sinusoidal reference mirror modulation to implement high-speed integrating buckets acquisition and a quadrature projection reconstruction algorithm in postprocessing. This method is illustrated experimentally using sets of four integrating bucket phase scans, acquired at 52kHz, for DC suppression of 73dB and complex conjugate suppression of 35dB. Densely sampled (3000 A-scans/image, acquired at 4.3  imagess) full-depth in vivo images of optic nerve head show CCA suppression for most image reflections to the noise floor.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, Opt. Lett. 27, 1415 (2002).
    [CrossRef]
  2. E. Gotzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, Opt. Express 13, 583 (2005).
    [CrossRef] [PubMed]
  3. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, Opt. Express 14, 1487 (2006).
    [CrossRef] [PubMed]
  4. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, Opt. Lett. 31, 2426 (2006).
    [CrossRef] [PubMed]
  5. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, Opt. Lett. 31, 362 (2006).
    [CrossRef] [PubMed]
  6. A. B. Vakhtin, K. A. Peterson, and D. J. Kane, Opt. Lett. 31, 1271 (2006).
    [CrossRef] [PubMed]
  7. A. B. Vakhtin, K. A. Peterson, and D. J. Kane, Appl. Opt. 46, 3870 (2007).
    [CrossRef] [PubMed]
  8. R. K. Wang, Appl. Phys. Lett. 90, 054103 (2007).
    [CrossRef]
  9. O. Sakai and H. Okazaki, Appl. Opt. 25, 3137 (1986).
    [CrossRef]
  10. O. Sasaki, H. Okazaki, and M. Sakai, Appl. Opt. 26, 1089 (1987).
    [CrossRef] [PubMed]
  11. A. Dubois, J. Opt. Soc. Am. A 18, 1972 (2001).
    [CrossRef]
  12. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, Opt. Express 12, 2977 (2004).
    [CrossRef] [PubMed]

2007

2006

2005

2004

2002

2001

1987

1986

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SDOCT retinal system for integrating bucket acquisition. The PZT-mounted reference mirror was driven using the sinusoidal output of a function generator triggered by the CCD. PC, polarization controller.

Fig. 2
Fig. 2

M-mode A-scan acquired from a 60 dB calibrated reflector in the sample arm. (a) Phase-shifted spectral interferograms acquired using four integrating bucket steps show reduced amplitudes as a result of fringe washout. (b) Each integrating bucket is shifted by a value determined by the parameters of the driving signal ( ψ = 22.3 V pp , θ = 341 o ) for four quadrature steps. (c) Complex conjugate corrupted and resolved A-scans with DC and complex conjugate suppression of 72.5 and 34.7 dB , respectively, and fringe washout of 3.2 dB .

Fig. 3
Fig. 3

Complex conjugate (a) corrupted and (b) resolved in vivo optic nerve head images with 1024   pixels and 3000 lines/frame resolved using four integrating bucket steps ( 4.3 images s ) . In the complex conjugate resolved images, note that the maximal image brightness occurs at the axial center of the image (i.e., at DC), the doubled image depth, and the additional image depth required for nerve head imaging.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

s ( k , t ) = m = 1 M A m cos [ 2 k Δ z m + ψ sin ( ω t + θ ) ] .
I p ( k ) = ( 1 τ ) ( p 1 ) ( τ + Δ τ ) ( p 1 ) ( τ + Δ τ ) + τ s ( k , t ) d t , p = 1 N .
I p ( k ) = A m [ cos ( 2 k Δ z m ) G p ( ψ , θ ) sin ( 2 k Δ z m ) H p ( ψ , θ ) ] .
G p ( ψ , θ ) = ( 1 τ ) ( p 1 ) ( τ + Δ τ ) ( p 1 ) ( τ + Δ τ ) + τ { J 0 ( ψ ) + 2 n = 1 + J 2 n ( ψ ) cos [ 2 n ( ω t + θ ) ] } d t = J 0 ( ψ ) + ( N ( τ + Δ τ ) 2 τ π ) n = 1 + J 2 n ( ψ ) n { sin [ 2 n ( 2 π N ( ( p 1 ) + τ τ + Δ τ ) + θ ) ] sin [ 2 n ( 2 ( p 1 ) π N + θ ) ] } ,
H p ( ψ , θ ) = ( 1 τ ) ( p 1 ) ( τ + Δ τ ) ( p 1 ) ( τ + Δ τ ) + τ { 2 n = 0 + J 2 n + 1 ( ψ ) cos [ ( 2 n + 1 ) ( ω t + θ ) ] } d t = ( N ( τ + Δ τ ) τ π ) n = 0 + J 2 n + 1 ( ψ ) 2 n + 1 { cos [ ( 2 n + 1 ) ( 2 π N ( ( p 1 ) + τ τ + Δ τ ) + θ ) ] cos [ ( 2 n + 1 ) ( 2 ( p 1 ) π N + θ ) ] } .

Metrics