Abstract

We demonstrate efficient Raman lasing with CaF2 whispering-gallery-mode resonators. Continuous-wave emission threshold is shown to be possible below 1μW with a 5mm cavity, which is to our knowledge orders of magnitude lower than in any other Raman source. Low-threshold lasing is made possible by the ultrahigh optical quality factor of the cavity, of the order of Q=5×1010. Stokes components of up to the fifth order were observed at a pump power of 160μW, and up to the eighth order at 1mW. A lasing threshold of 15μW was also observed in a 100μm CaF2 microcavity. Potential applications are discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, Opt. Lett. 30, 2454 (2005).
    [CrossRef] [PubMed]
  2. E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
    [CrossRef]
  3. O. Boyraz and B. Jalali, Opt. Express 12, 5269-5273 (2004).
    [CrossRef] [PubMed]
  4. B. Min, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
    [CrossRef] [PubMed]
  5. T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 10, 1219 (2004).
    [CrossRef]
  6. A. B. Matsko, A. A. Savchenkov, R. J. Letargad, V. S. Ilchenko, and L. Maleki, J. Opt. B 5, 272 (2003).
    [CrossRef]
  7. I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 265, 33 (2006).
    [CrossRef]
  8. A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, Opt. Lett. 31, 1313 (2006).
    [CrossRef] [PubMed]
  9. E. D. Black, Am. J. Phys. 69, 79 (2001).
    [CrossRef]
  10. A. R. Gee, D. C. O'Shea, and H. Z. Cummins, Solid State Commun. 4, 43 (1965).
    [CrossRef]
  11. D. N. Mirlin and I. I. Reshina, Fiz. Tverd. Tela (Leningrad) 13, 2639 (1972).
  12. S. Uetake, R. S. D. Sihombing, and K. Hakuta, Opt. Lett. 13, 421 (2002).
    [CrossRef]
  13. S. Logunov and S. Kuchinsky, J. Appl. Phys. 98, 053501 (2005).
    [CrossRef]

2006 (2)

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 265, 33 (2006).
[CrossRef]

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, Opt. Lett. 31, 1313 (2006).
[CrossRef] [PubMed]

2005 (2)

H. M. Pask, Opt. Lett. 30, 2454 (2005).
[CrossRef] [PubMed]

S. Logunov and S. Kuchinsky, J. Appl. Phys. 98, 053501 (2005).
[CrossRef]

2004 (2)

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 10, 1219 (2004).
[CrossRef]

O. Boyraz and B. Jalali, Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

2003 (2)

B. Min, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, R. J. Letargad, V. S. Ilchenko, and L. Maleki, J. Opt. B 5, 272 (2003).
[CrossRef]

2002 (1)

S. Uetake, R. S. D. Sihombing, and K. Hakuta, Opt. Lett. 13, 421 (2002).
[CrossRef]

2001 (1)

E. D. Black, Am. J. Phys. 69, 79 (2001).
[CrossRef]

2000 (1)

E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
[CrossRef]

1972 (1)

D. N. Mirlin and I. I. Reshina, Fiz. Tverd. Tela (Leningrad) 13, 2639 (1972).

1965 (1)

A. R. Gee, D. C. O'Shea, and H. Z. Cummins, Solid State Commun. 4, 43 (1965).
[CrossRef]

Black, E. D.

E. D. Black, Am. J. Phys. 69, 79 (2001).
[CrossRef]

Boyraz, O.

Cummins, H. Z.

A. R. Gee, D. C. O'Shea, and H. Z. Cummins, Solid State Commun. 4, 43 (1965).
[CrossRef]

Dianov, E. M.

E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
[CrossRef]

Gee, A. R.

A. R. Gee, D. C. O'Shea, and H. Z. Cummins, Solid State Commun. 4, 43 (1965).
[CrossRef]

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 265, 33 (2006).
[CrossRef]

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, Opt. Lett. 31, 1313 (2006).
[CrossRef] [PubMed]

Hakuta, K.

S. Uetake, R. S. D. Sihombing, and K. Hakuta, Opt. Lett. 13, 421 (2002).
[CrossRef]

Ilchenko, V. S.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 265, 33 (2006).
[CrossRef]

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, Opt. Lett. 31, 1313 (2006).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, R. J. Letargad, V. S. Ilchenko, and L. Maleki, J. Opt. B 5, 272 (2003).
[CrossRef]

Jalali, B.

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 10, 1219 (2004).
[CrossRef]

B. Min, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
[CrossRef] [PubMed]

Kuchinsky, S.

S. Logunov and S. Kuchinsky, J. Appl. Phys. 98, 053501 (2005).
[CrossRef]

Letargad, R. J.

A. B. Matsko, A. A. Savchenkov, R. J. Letargad, V. S. Ilchenko, and L. Maleki, J. Opt. B 5, 272 (2003).
[CrossRef]

Logunov, S.

S. Logunov and S. Kuchinsky, J. Appl. Phys. 98, 053501 (2005).
[CrossRef]

Maleki, L.

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, Opt. Lett. 31, 1313 (2006).
[CrossRef] [PubMed]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 265, 33 (2006).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, R. J. Letargad, V. S. Ilchenko, and L. Maleki, J. Opt. B 5, 272 (2003).
[CrossRef]

Matsko, A. B.

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, Opt. Lett. 31, 1313 (2006).
[CrossRef] [PubMed]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 265, 33 (2006).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, R. J. Letargad, V. S. Ilchenko, and L. Maleki, J. Opt. B 5, 272 (2003).
[CrossRef]

Min, B.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 10, 1219 (2004).
[CrossRef]

B. Min, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
[CrossRef] [PubMed]

Mirlin, D. N.

D. N. Mirlin and I. I. Reshina, Fiz. Tverd. Tela (Leningrad) 13, 2639 (1972).

Mohageg, M.

O'Shea, D. C.

A. R. Gee, D. C. O'Shea, and H. Z. Cummins, Solid State Commun. 4, 43 (1965).
[CrossRef]

Pask, H. M.

Prokhorov, A. M.

E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
[CrossRef]

Reshina, I. I.

D. N. Mirlin and I. I. Reshina, Fiz. Tverd. Tela (Leningrad) 13, 2639 (1972).

Savchenkov, A. A.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 265, 33 (2006).
[CrossRef]

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, Opt. Lett. 31, 1313 (2006).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, R. J. Letargad, V. S. Ilchenko, and L. Maleki, J. Opt. B 5, 272 (2003).
[CrossRef]

Sihombing, R. S. D.

S. Uetake, R. S. D. Sihombing, and K. Hakuta, Opt. Lett. 13, 421 (2002).
[CrossRef]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 10, 1219 (2004).
[CrossRef]

Strekalov, D.

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, Opt. Lett. 31, 1313 (2006).
[CrossRef] [PubMed]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 265, 33 (2006).
[CrossRef]

Uetake, S.

S. Uetake, R. S. D. Sihombing, and K. Hakuta, Opt. Lett. 13, 421 (2002).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 10, 1219 (2004).
[CrossRef]

B. Min, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
[CrossRef] [PubMed]

Am. J. Phys. (1)

E. D. Black, Am. J. Phys. 69, 79 (2001).
[CrossRef]

Fiz. Tverd. Tela (Leningrad) (1)

D. N. Mirlin and I. I. Reshina, Fiz. Tverd. Tela (Leningrad) 13, 2639 (1972).

IEEE J. Sel. Top. Quantum Electron. (2)

E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 10, 1219 (2004).
[CrossRef]

J. Appl. Phys. (1)

S. Logunov and S. Kuchinsky, J. Appl. Phys. 98, 053501 (2005).
[CrossRef]

J. Opt. B (1)

A. B. Matsko, A. A. Savchenkov, R. J. Letargad, V. S. Ilchenko, and L. Maleki, J. Opt. B 5, 272 (2003).
[CrossRef]

Opt. Commun. (1)

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Opt. Commun. 265, 33 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Solid State Commun. (1)

A. R. Gee, D. C. O'Shea, and H. Z. Cummins, Solid State Commun. 4, 43 (1965).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup diagram with (inset) coupling schematics. A PDH locking technique is used to stabilize the power in a cavity. WGMR, whispering-gallery-mode resonator; BS, beam splitter.

Fig. 2
Fig. 2

Output optical power as a function of the pump power for nonoptimized operation of the Raman laser based on a 5 mm cavity.

Fig. 3
Fig. 3

Cascaded operation of the Raman laser. Insets, photograph of a cavity and detailed spectrum of the first Stokes component. Power is as seen on the spectrum analyzer; the actual pump power is 1 mW .

Fig. 4
Fig. 4

Cascaded operation of the Raman laser. The pump power is 160 μ W . The spectrum is combined from nine consecutive measurements obtained in an unlocked regime.

Fig. 5
Fig. 5

Cascaded Raman lasing in a 0.1 mm fluorite microcavity. The pump power is about 100 μ W .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P th = π 2 n 2 ξ g c Q S Q P V m λ P λ S .

Metrics