Abstract

The high-frequency modulation characteristics of GaAs-based bipolar cascade vertical cavity surface-emitting lasers operating at 980nm with GaAs tunnel junctions and p-doped Al0.98Ga0.02As oxide apertures have been measured. We achieve 3dB laser output modulations of 6.5GHz for two-stage and 9.4GHz for three-stage devices in response to small-signal current injection at an operating temperature of 50°C.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Patterson, G. Petrich, R. Ram, and L. Kolodziejski, Electron. Lett. 35, 395 (1999).
    [CrossRef]
  2. T. Knödl, M. Golling, A. Straub, and K. Ebeling, Electron. Lett. 37, 31 (2001).
    [CrossRef]
  3. J. Getty, E. Skogen, L. Johansson, and L. Coldren, IEEE Photon. Technol. Lett. 15, 1513 (2003).
    [CrossRef]
  4. P. Mayer, F. Rana, and R. Ram, Appl. Phys. Lett. 82, 689 (2003).
    [CrossRef]
  5. J. Wierer, P. Evans, N. Holonyak, and D. Kellogg, Appl. Phys. Lett. 71, 3468 (1997).
    [CrossRef]
  6. W. Schmid, D. Wiedenmann, M. Grabherr, R. Jager, R. Michalzik, and K. Ebeling, Electron. Lett. 34, 553 (1998).
    [CrossRef]
  7. J. Kim, E. Hall, O. Sjölund, G. Almuneau, and L. Coldren, Electron. Lett. 35, 1084 (1999).
    [CrossRef]
  8. R. Koda, C. Wang, D. Lofgreen, and L. Coldren, Appl. Phys. Lett. 86, 211104 (2005).
    [CrossRef]
  9. T. Knödl, M. Golling, A. Straub, R. Jager, R. Michalzik, and K. Ebeling, IEEE J. Sel. Top. Quantum Electron. 9, 1406 (2003).
    [CrossRef]
  10. W. Siskaninetz, J. Ehret, J. Lott, J. Griffith, and T. Nelson, Appl. Phys. Lett. 86, 111108 (2005).
    [CrossRef]

2005 (2)

R. Koda, C. Wang, D. Lofgreen, and L. Coldren, Appl. Phys. Lett. 86, 211104 (2005).
[CrossRef]

W. Siskaninetz, J. Ehret, J. Lott, J. Griffith, and T. Nelson, Appl. Phys. Lett. 86, 111108 (2005).
[CrossRef]

2003 (3)

T. Knödl, M. Golling, A. Straub, R. Jager, R. Michalzik, and K. Ebeling, IEEE J. Sel. Top. Quantum Electron. 9, 1406 (2003).
[CrossRef]

J. Getty, E. Skogen, L. Johansson, and L. Coldren, IEEE Photon. Technol. Lett. 15, 1513 (2003).
[CrossRef]

P. Mayer, F. Rana, and R. Ram, Appl. Phys. Lett. 82, 689 (2003).
[CrossRef]

2001 (1)

T. Knödl, M. Golling, A. Straub, and K. Ebeling, Electron. Lett. 37, 31 (2001).
[CrossRef]

1999 (2)

S. Patterson, G. Petrich, R. Ram, and L. Kolodziejski, Electron. Lett. 35, 395 (1999).
[CrossRef]

J. Kim, E. Hall, O. Sjölund, G. Almuneau, and L. Coldren, Electron. Lett. 35, 1084 (1999).
[CrossRef]

1998 (1)

W. Schmid, D. Wiedenmann, M. Grabherr, R. Jager, R. Michalzik, and K. Ebeling, Electron. Lett. 34, 553 (1998).
[CrossRef]

1997 (1)

J. Wierer, P. Evans, N. Holonyak, and D. Kellogg, Appl. Phys. Lett. 71, 3468 (1997).
[CrossRef]

Almuneau, G.

J. Kim, E. Hall, O. Sjölund, G. Almuneau, and L. Coldren, Electron. Lett. 35, 1084 (1999).
[CrossRef]

Coldren, L.

R. Koda, C. Wang, D. Lofgreen, and L. Coldren, Appl. Phys. Lett. 86, 211104 (2005).
[CrossRef]

J. Getty, E. Skogen, L. Johansson, and L. Coldren, IEEE Photon. Technol. Lett. 15, 1513 (2003).
[CrossRef]

J. Kim, E. Hall, O. Sjölund, G. Almuneau, and L. Coldren, Electron. Lett. 35, 1084 (1999).
[CrossRef]

Ebeling, K.

T. Knödl, M. Golling, A. Straub, R. Jager, R. Michalzik, and K. Ebeling, IEEE J. Sel. Top. Quantum Electron. 9, 1406 (2003).
[CrossRef]

T. Knödl, M. Golling, A. Straub, and K. Ebeling, Electron. Lett. 37, 31 (2001).
[CrossRef]

W. Schmid, D. Wiedenmann, M. Grabherr, R. Jager, R. Michalzik, and K. Ebeling, Electron. Lett. 34, 553 (1998).
[CrossRef]

Ehret, J.

W. Siskaninetz, J. Ehret, J. Lott, J. Griffith, and T. Nelson, Appl. Phys. Lett. 86, 111108 (2005).
[CrossRef]

Evans, P.

J. Wierer, P. Evans, N. Holonyak, and D. Kellogg, Appl. Phys. Lett. 71, 3468 (1997).
[CrossRef]

Getty, J.

J. Getty, E. Skogen, L. Johansson, and L. Coldren, IEEE Photon. Technol. Lett. 15, 1513 (2003).
[CrossRef]

Golling, M.

T. Knödl, M. Golling, A. Straub, R. Jager, R. Michalzik, and K. Ebeling, IEEE J. Sel. Top. Quantum Electron. 9, 1406 (2003).
[CrossRef]

T. Knödl, M. Golling, A. Straub, and K. Ebeling, Electron. Lett. 37, 31 (2001).
[CrossRef]

Grabherr, M.

W. Schmid, D. Wiedenmann, M. Grabherr, R. Jager, R. Michalzik, and K. Ebeling, Electron. Lett. 34, 553 (1998).
[CrossRef]

Griffith, J.

W. Siskaninetz, J. Ehret, J. Lott, J. Griffith, and T. Nelson, Appl. Phys. Lett. 86, 111108 (2005).
[CrossRef]

Hall, E.

J. Kim, E. Hall, O. Sjölund, G. Almuneau, and L. Coldren, Electron. Lett. 35, 1084 (1999).
[CrossRef]

Holonyak, N.

J. Wierer, P. Evans, N. Holonyak, and D. Kellogg, Appl. Phys. Lett. 71, 3468 (1997).
[CrossRef]

Jager, R.

T. Knödl, M. Golling, A. Straub, R. Jager, R. Michalzik, and K. Ebeling, IEEE J. Sel. Top. Quantum Electron. 9, 1406 (2003).
[CrossRef]

W. Schmid, D. Wiedenmann, M. Grabherr, R. Jager, R. Michalzik, and K. Ebeling, Electron. Lett. 34, 553 (1998).
[CrossRef]

Johansson, L.

J. Getty, E. Skogen, L. Johansson, and L. Coldren, IEEE Photon. Technol. Lett. 15, 1513 (2003).
[CrossRef]

Kellogg, D.

J. Wierer, P. Evans, N. Holonyak, and D. Kellogg, Appl. Phys. Lett. 71, 3468 (1997).
[CrossRef]

Kim, J.

J. Kim, E. Hall, O. Sjölund, G. Almuneau, and L. Coldren, Electron. Lett. 35, 1084 (1999).
[CrossRef]

Knödl, T.

T. Knödl, M. Golling, A. Straub, R. Jager, R. Michalzik, and K. Ebeling, IEEE J. Sel. Top. Quantum Electron. 9, 1406 (2003).
[CrossRef]

T. Knödl, M. Golling, A. Straub, and K. Ebeling, Electron. Lett. 37, 31 (2001).
[CrossRef]

Koda, R.

R. Koda, C. Wang, D. Lofgreen, and L. Coldren, Appl. Phys. Lett. 86, 211104 (2005).
[CrossRef]

Kolodziejski, L.

S. Patterson, G. Petrich, R. Ram, and L. Kolodziejski, Electron. Lett. 35, 395 (1999).
[CrossRef]

Lofgreen, D.

R. Koda, C. Wang, D. Lofgreen, and L. Coldren, Appl. Phys. Lett. 86, 211104 (2005).
[CrossRef]

Lott, J.

W. Siskaninetz, J. Ehret, J. Lott, J. Griffith, and T. Nelson, Appl. Phys. Lett. 86, 111108 (2005).
[CrossRef]

Mayer, P.

P. Mayer, F. Rana, and R. Ram, Appl. Phys. Lett. 82, 689 (2003).
[CrossRef]

Michalzik, R.

T. Knödl, M. Golling, A. Straub, R. Jager, R. Michalzik, and K. Ebeling, IEEE J. Sel. Top. Quantum Electron. 9, 1406 (2003).
[CrossRef]

W. Schmid, D. Wiedenmann, M. Grabherr, R. Jager, R. Michalzik, and K. Ebeling, Electron. Lett. 34, 553 (1998).
[CrossRef]

Nelson, T.

W. Siskaninetz, J. Ehret, J. Lott, J. Griffith, and T. Nelson, Appl. Phys. Lett. 86, 111108 (2005).
[CrossRef]

Patterson, S.

S. Patterson, G. Petrich, R. Ram, and L. Kolodziejski, Electron. Lett. 35, 395 (1999).
[CrossRef]

Petrich, G.

S. Patterson, G. Petrich, R. Ram, and L. Kolodziejski, Electron. Lett. 35, 395 (1999).
[CrossRef]

Ram, R.

P. Mayer, F. Rana, and R. Ram, Appl. Phys. Lett. 82, 689 (2003).
[CrossRef]

S. Patterson, G. Petrich, R. Ram, and L. Kolodziejski, Electron. Lett. 35, 395 (1999).
[CrossRef]

Rana, F.

P. Mayer, F. Rana, and R. Ram, Appl. Phys. Lett. 82, 689 (2003).
[CrossRef]

Schmid, W.

W. Schmid, D. Wiedenmann, M. Grabherr, R. Jager, R. Michalzik, and K. Ebeling, Electron. Lett. 34, 553 (1998).
[CrossRef]

Siskaninetz, W.

W. Siskaninetz, J. Ehret, J. Lott, J. Griffith, and T. Nelson, Appl. Phys. Lett. 86, 111108 (2005).
[CrossRef]

Sjölund, O.

J. Kim, E. Hall, O. Sjölund, G. Almuneau, and L. Coldren, Electron. Lett. 35, 1084 (1999).
[CrossRef]

Skogen, E.

J. Getty, E. Skogen, L. Johansson, and L. Coldren, IEEE Photon. Technol. Lett. 15, 1513 (2003).
[CrossRef]

Straub, A.

T. Knödl, M. Golling, A. Straub, R. Jager, R. Michalzik, and K. Ebeling, IEEE J. Sel. Top. Quantum Electron. 9, 1406 (2003).
[CrossRef]

T. Knödl, M. Golling, A. Straub, and K. Ebeling, Electron. Lett. 37, 31 (2001).
[CrossRef]

Wang, C.

R. Koda, C. Wang, D. Lofgreen, and L. Coldren, Appl. Phys. Lett. 86, 211104 (2005).
[CrossRef]

Wiedenmann, D.

W. Schmid, D. Wiedenmann, M. Grabherr, R. Jager, R. Michalzik, and K. Ebeling, Electron. Lett. 34, 553 (1998).
[CrossRef]

Wierer, J.

J. Wierer, P. Evans, N. Holonyak, and D. Kellogg, Appl. Phys. Lett. 71, 3468 (1997).
[CrossRef]

Appl. Phys. Lett. (4)

P. Mayer, F. Rana, and R. Ram, Appl. Phys. Lett. 82, 689 (2003).
[CrossRef]

J. Wierer, P. Evans, N. Holonyak, and D. Kellogg, Appl. Phys. Lett. 71, 3468 (1997).
[CrossRef]

R. Koda, C. Wang, D. Lofgreen, and L. Coldren, Appl. Phys. Lett. 86, 211104 (2005).
[CrossRef]

W. Siskaninetz, J. Ehret, J. Lott, J. Griffith, and T. Nelson, Appl. Phys. Lett. 86, 111108 (2005).
[CrossRef]

Electron. Lett. (4)

S. Patterson, G. Petrich, R. Ram, and L. Kolodziejski, Electron. Lett. 35, 395 (1999).
[CrossRef]

T. Knödl, M. Golling, A. Straub, and K. Ebeling, Electron. Lett. 37, 31 (2001).
[CrossRef]

W. Schmid, D. Wiedenmann, M. Grabherr, R. Jager, R. Michalzik, and K. Ebeling, Electron. Lett. 34, 553 (1998).
[CrossRef]

J. Kim, E. Hall, O. Sjölund, G. Almuneau, and L. Coldren, Electron. Lett. 35, 1084 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Knödl, M. Golling, A. Straub, R. Jager, R. Michalzik, and K. Ebeling, IEEE J. Sel. Top. Quantum Electron. 9, 1406 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Getty, E. Skogen, L. Johansson, and L. Coldren, IEEE Photon. Technol. Lett. 15, 1513 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of a single-stage BC VCSEL. The curve indicates the optical field of the 5 2 λ cavity resonance. (b) Micrograph of a processed high-speed device. (c) Close-up scanning electron microscope image of the VCSEL aperture.

Fig. 2
Fig. 2

LI and VI characteristics for a three-stage and a two-stage device at 50 ° C . Solid curves, LI characteristics, dashed lines curves, VI characteristics. The bold portions of the LI curves indicate the linear regime where the slope efficiencies were calculated.

Fig. 3
Fig. 3

Frequency response characteristics of BC VCSELs at 50 ° C operating under the labeled conditions. The data points are measured s 21 values normalized to MTF(0), and the curves are normalized MTFs.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

MTF ( ω ) = A + B + C ( 1 + τ par 2 ω 2 ) [ γ 2 ω 2 + ( ω 2 ω r 2 ) 2 ] ,
A = C m 2 ( 1 + τ par 2 ω 2 ) ω r 4 ,
B = 2 C m C par ω r 2 [ ( γ τ par 1 ) ω 2 + ω r 2 ] ,
C = C par 2 [ γ 2 ω 2 + ( ω 2 ω r 2 ) 2 ] .

Metrics