Abstract

We propose the cascaded dynamic eigenstates (DESs) of polarization to analyze multicomponent polarization control (PC) devices, and achieve the analytical expression of output state of polarization (SOP) as a function of voltage for piezoelectric polarization control (PPC). By measuring the DES at the output port of the device, the prestage DESs will rotate around subsequent ones. Experimental results in PPC confirm the validity of our analysis. The average error of our theoretical output SOP is 1.23°, and the SOP response time is 10μs, which is promising to realize a quasi-open-loop high-speed PC.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Yoshino, M. Yokota, and T. Kenmochi, Electron. Lett. 39, 1800 (2003).
    [CrossRef]
  2. H. Shimizu, S. Yamazaki, T. Ono, and K. Emura, J. Lightwave Technol. 9, 1217 (1991).
    [CrossRef]
  3. W. H. J. Aarts and G. D. Khoe, J. Lightwave Technol. 7, 1033 (1989).
    [CrossRef]
  4. R. W. Schmieder, J. Opt. Soc. Am. 59, 297 (1969).
    [CrossRef]
  5. W. Shieh and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 40 (2001).
    [CrossRef]
  6. J. F. Cornwell, Group Theory in Physics: An Introduction (Academic, 1997).
  7. A. S. Dief, Advanced Matrix Theory (Abacus, 1991).
  8. R. Ulrich, Appl. Phys. Lett. 35, 840 (1979).
    [CrossRef]
  9. A. C. Tamhane, Statistics and Data Analysis from Elementary to Intermediate (Prentice Hall, 2000).

2003 (1)

T. Yoshino, M. Yokota, and T. Kenmochi, Electron. Lett. 39, 1800 (2003).
[CrossRef]

2001 (1)

W. Shieh and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 40 (2001).
[CrossRef]

1991 (1)

H. Shimizu, S. Yamazaki, T. Ono, and K. Emura, J. Lightwave Technol. 9, 1217 (1991).
[CrossRef]

1989 (1)

W. H. J. Aarts and G. D. Khoe, J. Lightwave Technol. 7, 1033 (1989).
[CrossRef]

1979 (1)

R. Ulrich, Appl. Phys. Lett. 35, 840 (1979).
[CrossRef]

1969 (1)

Appl. Phys. Lett. (1)

R. Ulrich, Appl. Phys. Lett. 35, 840 (1979).
[CrossRef]

Electron. Lett. (1)

T. Yoshino, M. Yokota, and T. Kenmochi, Electron. Lett. 39, 1800 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Shieh and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 40 (2001).
[CrossRef]

J. Lightwave Technol. (2)

H. Shimizu, S. Yamazaki, T. Ono, and K. Emura, J. Lightwave Technol. 9, 1217 (1991).
[CrossRef]

W. H. J. Aarts and G. D. Khoe, J. Lightwave Technol. 7, 1033 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (3)

A. C. Tamhane, Statistics and Data Analysis from Elementary to Intermediate (Prentice Hall, 2000).

J. F. Cornwell, Group Theory in Physics: An Introduction (Academic, 1997).

A. S. Dief, Advanced Matrix Theory (Abacus, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for the cascaded DESs analysis.

Fig. 2
Fig. 2

(a) Traces of output SOP for three different u 1 and (b) demonstration of the DES rotation.

Fig. 3
Fig. 3

(a) Trace after coordinates transforming and (b) the periodicity of polarization rotation.

Fig. 4
Fig. 4

Comparison of theoretical and experimental output SOP.

Fig. 5
Fig. 5

Output SOP response time in PPC; S1, S2, and S3, output Stokes parameters.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

S o u t i u i = α i × S o u t i .
S o u t u = A S o u t = [ 0 a 3 a 2 a 3 0 a 1 a 2 a 1 0 ] S o u t .
S o u t = e A ( u u 0 ) S 0 ,
x = cos [ α ( u u 0 ) ] , y = 1 cos [ α ( u u 0 ) ] ,
z = sin [ α ( u u 0 ) ] ,
e A ( u u 0 ) = 1 α 2 [ a 1 2 + ( α 2 a 1 2 ) x , a 1 a 2 y + a 3 α z , a 1 a 3 y a 2 α z a 1 a 2 y a 3 α z , a 2 2 + ( α 2 a 2 2 ) x , a 2 a 3 y + a 1 α z a 1 a 3 y + a 2 α z , a 2 a 3 y a 1 α z , a 3 2 + ( α 2 a 3 2 ) x ] .
S o u t = S ( u , α , S 0 ) = x S 0 + y p S 1 + z S 2 ,
S o u t 1 = S ( u 1 , α , S 01 ) , S o u t 2 = S ( u 2 + u 20 , β , S o u t ) ,
S 01 = S ( 0 , β , S 0 ) ,
β ̂ = [ 0.356 , 0.8758 , 0.3258 ] T .
β = π 70.5 [ 0.356 , 0.8758 , 0.3258 ] T .
α 0 ( u 2 = 0 ) = π 66.5 [ 0.4481 , 0.4488 , 0.7169 ] T ,
α ( u 2 ) = π 66.5 S ( u 2 , β , α ̂ 0 ) .
η ¯ ( η ¯ = 1 n i = 1 n η i = 1 n i = 1 n S i t S i e S i e )

Metrics