Abstract

We have demonstrated both slow light in the absorption regime and fast light in the gain regime of a 1.55μm quantum-dot semiconductor optical amplifier at room temperature. The theory with coherent population oscillations and four-wave mixing effects agrees well with the experimental results. We have observed a larger phase delay at the excited state than that at the ground state transition, likely due to the higher gain and smaller saturation power of the excited state.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 9, 1884 (2003).
    [CrossRef]
  2. H. Kang, G. Hernandez, and Y. Zhu, Phys. Rev. Lett. 93, 073601 (2004).
    [CrossRef] [PubMed]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).
    [CrossRef] [PubMed]
  4. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  5. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, Opt. Lett. 29, 2291 (2004).
    [CrossRef] [PubMed]
  6. H. Su and S. L. Chuang, Appl. Phys. Lett. 88, 061102 (2006).
    [CrossRef]
  7. H. Su, P. Kondratko, and S. L. Chuang, Opt. Express 14, 4800 (2006); note that a logarithmic ln should be inserted before the square brackets in Eq. 12.
    [CrossRef] [PubMed]
  8. H. D. Kim, W. G. Jeong, J. H. Lee, J. S. Yim, D. Lee, R. Stevenson, P. D. Dapkus, J. W. Jang, and S. H. Pyun, Appl. Phys. Lett. 87, 083110 (2005).
    [CrossRef]
  9. N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, Appl. Phys. Lett. 90, 241108 (2007).
    [CrossRef]
  10. G. P. Agrawal, J. Opt. Soc. Am. B 5, 147 (1988).
    [CrossRef]
  11. T. Mukai and T. Saitoh, IEEE J. Quantum Electron. 26, 865 (1990).
    [CrossRef]

2007 (1)

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, Appl. Phys. Lett. 90, 241108 (2007).
[CrossRef]

2006 (2)

2005 (2)

H. D. Kim, W. G. Jeong, J. H. Lee, J. S. Yim, D. Lee, R. Stevenson, P. D. Dapkus, J. W. Jang, and S. H. Pyun, Appl. Phys. Lett. 87, 083110 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 9, 1884 (2003).
[CrossRef]

1990 (1)

T. Mukai and T. Saitoh, IEEE J. Quantum Electron. 26, 865 (1990).
[CrossRef]

1988 (1)

Appl. Phys. Lett. (3)

H. Su and S. L. Chuang, Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

H. D. Kim, W. G. Jeong, J. H. Lee, J. S. Yim, D. Lee, R. Stevenson, P. D. Dapkus, J. W. Jang, and S. H. Pyun, Appl. Phys. Lett. 87, 083110 (2005).
[CrossRef]

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, Appl. Phys. Lett. 90, 241108 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Mukai and T. Saitoh, IEEE J. Quantum Electron. 26, 865 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

H. Kang, G. Hernandez, and Y. Zhu, Phys. Rev. Lett. 93, 073601 (2004).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Proc. IEEE (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, Proc. IEEE 9, 1884 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram for the experimental setup. PC, polarization controller; PD, photo detector. A pump beam from a tunable laser diode is modulated in RF generating two sidebands. A different current injected into to the QD SOA gives a different phase delay in the signal.

Fig. 2
Fig. 2

(a) Phase delay and (b) negative ac optical gain as a function of modulation frequency in the absorptive regime. (c) Phase advance and (d) positive ac optical gain in the gain regime. Solid curves are based on the model of [7]. Symbols are experimental data taken at 1530 nm . The transparent current is 164 mA .

Fig. 3
Fig. 3

(a) Comparison of ground state and excited state for phase shift as a function of current relative to the transparency. The data are taken at 1.0 GHz with an input power of 3.6 dBm . (b) Gain spectrum of the QD SOA at different injection currents, showing the ground and first excited state gain.

Tables (1)

Tables Icon

Table 1 Parameters Used in the Model Calculation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = 1 2 Ω τ 1 + ( Ω τ a Γ g ) 2 { a Γ g ln [ ( 1 + p out ) 2 + ( Ω τ ) 2 ( 1 + p in ) 2 + ( Ω τ ) 2 ] 2 ( a Γ g ) ln [ 1 a Γ g ( 1 + p out ) 1 a Γ g ( 1 + p in ) ] + 2 Ω τ tan 1 [ ( p out p in ) Ω τ ( 1 + p out ) ( 1 + p in ) + ( Ω τ ) 2 ] } ,

Metrics