Abstract

Fluorochromes have become essential reporter molecules in biological research. We show that the depth-resolved distribution of fluorochromes in small animals can be imaged with 25fmol sensitivity and 150μm spatial resolution by means of multispectral photoacoustic imaging. The major advantage of the multispectral approach is the sensitive differentiation of chromophores and fluorochromes of interest based on self-reference measurements, as evidenced in this study by resolving a commonly used fluorochrome (Alexa Fluor 750) in mouse. The suggested method is well suited for enhancing visualization of functional and molecular information in vivo and longitudinally.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
    [CrossRef] [PubMed]
  2. R. A. Kruger, W. L. Kiser Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, Molec. Imag. 2, 113 (2003).
    [CrossRef]
  3. J. Laufer, D. Delpy, C. Elwell, and P. Beard, Phys. Med. Biol. 52, 41 (2007).
    [CrossRef]
  4. R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, Opt. Express 13, 89 (2005).
    [CrossRef] [PubMed]
  5. X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, Cancer Res. 65, 6330 (2005).
    [CrossRef] [PubMed]
  6. R. M. Hoffman, Lancet Oncol. 3, 546 (2002).
    [CrossRef] [PubMed]
  7. Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O'Neal, G. Stoica, and L. V. Wang, Nano Lett. 4, 1689 (2004).
    [CrossRef]
  8. L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, J. Biomed. Opt. 12, 020504 (2007).
    [CrossRef] [PubMed]
  9. V. Ntziachristos and R. Weissleder, Opt. Lett. 26, 893 (2001).
    [CrossRef]
  10. A. J. Welch and M. J. C. van Gemert, eds., Optical Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).
  11. B. T. Cox and P. C. Beard, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 394 (2007).
    [CrossRef] [PubMed]

2007

J. Laufer, D. Delpy, C. Elwell, and P. Beard, Phys. Med. Biol. 52, 41 (2007).
[CrossRef]

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

B. T. Cox and P. C. Beard, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 394 (2007).
[CrossRef] [PubMed]

2005

2004

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O'Neal, G. Stoica, and L. V. Wang, Nano Lett. 4, 1689 (2004).
[CrossRef]

2003

X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

R. A. Kruger, W. L. Kiser Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, Molec. Imag. 2, 113 (2003).
[CrossRef]

2002

R. M. Hoffman, Lancet Oncol. 3, 546 (2002).
[CrossRef] [PubMed]

2001

Cancer Res.

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, Cancer Res. 65, 6330 (2005).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

B. T. Cox and P. C. Beard, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 394 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt.

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

Lancet Oncol.

R. M. Hoffman, Lancet Oncol. 3, 546 (2002).
[CrossRef] [PubMed]

Molec. Imag.

R. A. Kruger, W. L. Kiser Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, Molec. Imag. 2, 113 (2003).
[CrossRef]

Nano Lett.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O'Neal, G. Stoica, and L. V. Wang, Nano Lett. 4, 1689 (2004).
[CrossRef]

Nat. Biotechnol.

X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, Phys. Med. Biol. 52, 41 (2007).
[CrossRef]

Other

A. J. Welch and M. J. C. van Gemert, eds., Optical Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Wavelength dependence of absorption by AF750 and common tissue chromophores.

Fig. 2
Fig. 2

Photoacoustic tomography cross-sectional images, acquired at (a) 750, (b) 770, and (c) 790 nm . (d) Subtraction between 770 and 790 nm images. (e) Subtraction between 750 and 790 nm images. (f) MPI image incorporating measurements at all three wavelengths. (g) MPI image superimposed onto the photoacoustic image at 750 nm . (h) Planar fluorescence image of the sliced tissue, and (i) corresponding 25 MHz ultrasound image.

Metrics