Abstract

Tightly focused, linearly polarized, femtosecond laser radiation can produce highly birefringent nanograting structures inside fused silica glass. Here we report that when the polarization direction of the femtosecond light is changed, old nanogratings are erased and simultaneously replaced with new ones whose orientation is solely determined by the polarization of the rewrite beam. We also show that these volume nanogratings can be rewritten 1000 times with little degradation in their quality.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. M. Rayner, A. Naumov, and P. B. Corkum, Opt. Express 13, 3208 (2005).
    [CrossRef] [PubMed]
  2. Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, Phys. Rev. Lett. 91, 247405 (2003).
    [CrossRef] [PubMed]
  3. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 96, 057404 (2006).
    [CrossRef] [PubMed]
  4. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Appl. Phys. Lett. 87, 014104 (2005).
    [CrossRef]
  5. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, Appl. Phys. A 84, 47 (2006).
    [CrossRef]
  6. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Chap. X, p. 705.
  7. F. Genin, A. Salleo, T. Pistor, and L. Chase, J. Opt. Soc. Am. A 18, 2607 (2001).
    [CrossRef]
  8. G. Cheng, Q. Liu, Y. Wang, W. Zhao, and G. Chen, Opt. Lett. 4, 111 (2006).
  9. Y. Li, Y. Dou, R. An, H. Yang, and Q. Gong, Opt. Express 13, 2433 (2005).
    [CrossRef] [PubMed]

2006

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, Appl. Phys. A 84, 47 (2006).
[CrossRef]

G. Cheng, Q. Liu, Y. Wang, W. Zhao, and G. Chen, Opt. Lett. 4, 111 (2006).

2005

Y. Li, Y. Dou, R. An, H. Yang, and Q. Gong, Opt. Express 13, 2433 (2005).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Appl. Phys. Lett. 87, 014104 (2005).
[CrossRef]

D. M. Rayner, A. Naumov, and P. B. Corkum, Opt. Express 13, 3208 (2005).
[CrossRef] [PubMed]

2003

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

2001

Appl. Phys. A

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, Appl. Phys. A 84, 47 (2006).
[CrossRef]

Appl. Phys. Lett.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Appl. Phys. Lett. 87, 014104 (2005).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

G. Cheng, Q. Liu, Y. Wang, W. Zhao, and G. Chen, Opt. Lett. 4, 111 (2006).

Phys. Rev. Lett.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Chap. X, p. 705.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Femtosecond laser-written nanograting voxel. (a) A schematic of a voxel showing the laser light propagation direction k, the orientation of the electric field of the writing laser beam E, and the optical axis o. (b) A SEM image of the cross section of an etched voxel made with 10 5 laser pulses. (c) Maximum I max and minimum I min birefringence signals from a typical voxel (as defined in the text).

Fig. 2
Fig. 2

Rewriting of nanograting voxels. (a) A SEM image of a typical etched voxel made with 1500 laser pulses using a pulse energy of 300 nJ . (b) A voxel having the same exposure as in (a) is then overwritten with 1500 pulses with the laser polarization rotated 45 ° with respect to the original polarization. (c) Voxel morphology after 100 rewrites. (d) Maximum birefringence signals from the final rewritten nanograting I max and the residual nanogratings I res in (c).

Fig. 3
Fig. 3

Evolution of grating morphology as a function of number of rewrite laser pulses. SEM images of an etched sample for (a) three-pulse (the circle highlights a nascent crack growing in the new direction), (b) 30-pulse, (c) 300-pulse, and (d) 4000-pulse irradiation of voxels initially produced using 4000 pulses. The rewrite polarization is at 45 ° to the original polarization. The scale shown in the top left image is the same for all the images. (e) Intensity of the birefringence signal as a function of number of rewrite laser pulses. ∎, Input polarization is at 45 ° to the nanoplanes of the original voxels to maximize the birefringence signal from the original nanogratings and minimize the signal from the replacement nanogratings. •, Input polarization is at 45 ° to the nanoplanes of the evolving replacement voxels. The error bars show the standard deviation of measurements performed on ten separate voxels.

Metrics