Abstract

We demonstrate the excellent spectral properties of a diode laser setup that combines good tunability with superb short-term frequency stability and controllability. It is based on merging two concepts, the diode laser with resonant optical feedback and the grating stabilized diode laser. To characterize the short-term performance we beat two essentially identical diode lasers and find a short-term linewidth of 11kHz. Phase locking between these lasers is achieved with a servo bandwidth as small as 46kHz, although an analog phase detector is used that requires subradian residual phase error. Despite small phase error detection range and small servo bandwidth, cycle-slip-free phase locking is accomplished for typically many 10min, and the optical power is essentially contained in a spectral window of less than 20mHz relative to the optical reference. Due to the excellent performance this laser concept is well suited for atomic or molecular coherence experiments, which require phase locking of different lasers to each other, and as part of a flywheel for optical clocks.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. W. Fox, C. W. Gates, and L. W. Hollberg, in Cavity-Enhanced Spectroscopies, R.van Zee and J.Looney, eds. (Academic, 2002), vol. 40, pp. 1-46.
  2. M. Müller, F. Homann, R.-H. Rinkleff, A. Wicht, and K. Danzmann, Phys. Rev. A 64, 013803 (2001).
    [CrossRef]
  3. R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).
    [CrossRef]
  4. E. Peik, T. Schneider, and Ch. Tamm, J. Phys. B 39, 145 (2006).
    [CrossRef]
  5. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, Opt. Lett. 32, 641 (2007).
    [CrossRef] [PubMed]
  6. A. Wicht, M. Rudolf, P. Huke, R.-H. Rinkleff, and K. Danzmann, Appl. Phys. B 78, 137 (2004).
    [CrossRef]
  7. T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
    [CrossRef]
  8. N. Strauß, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, Appl. Phys. B 88, 21 (2007).
    [CrossRef]
  9. H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletic, Appl. Opt. 45, 9191 (2006).
    [CrossRef] [PubMed]

2007 (2)

2006 (2)

2004 (1)

A. Wicht, M. Rudolf, P. Huke, R.-H. Rinkleff, and K. Danzmann, Appl. Phys. B 78, 137 (2004).
[CrossRef]

2001 (1)

M. Müller, F. Homann, R.-H. Rinkleff, A. Wicht, and K. Danzmann, Phys. Rev. A 64, 013803 (2001).
[CrossRef]

1999 (1)

R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).
[CrossRef]

1980 (1)

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

A. Wicht, M. Rudolf, P. Huke, R.-H. Rinkleff, and K. Danzmann, Appl. Phys. B 78, 137 (2004).
[CrossRef]

R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).
[CrossRef]

N. Strauß, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, Appl. Phys. B 88, 21 (2007).
[CrossRef]

J. Phys. B (1)

E. Peik, T. Schneider, and Ch. Tamm, J. Phys. B 39, 145 (2006).
[CrossRef]

Opt. Commun. (1)

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

M. Müller, F. Homann, R.-H. Rinkleff, A. Wicht, and K. Danzmann, Phys. Rev. A 64, 013803 (2001).
[CrossRef]

Other (1)

R. W. Fox, C. W. Gates, and L. W. Hollberg, in Cavity-Enhanced Spectroscopies, R.van Zee and J.Looney, eds. (Academic, 2002), vol. 40, pp. 1-46.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the setup. D, laser diode; COL, collimator; GRT, transmission grating; HWP, half-wave plate; MC ( T = 8.2 % ) , MP, MF (both R = 99.7 % ), mirrors define the external cavity CAV. HCD, balanced polarization detector is part of the internal stabilization; OD, optical diode.

Fig. 2
Fig. 2

Setup used to investigate the short-term frequency stability and phase-locking performance. A, amplifier; INT, integrator; VCO, voltage-controlled oscillator; frequency-phase detector, Δ f is the output of a frequency-to-voltage converter; Δ ϕ provides linear response to the phase difference between the rf signal at inputs REF and RF. All rf- and timing-sensitive devices (except a Stanford Research Systems SR780 FFT analyzer) are phase locked to a common 10 MHz reference signal.

Fig. 3
Fig. 3

Spectrum of the beat-note signal between two essentially identical diode lasers. The rf-spectrum analyzer is set to sweep 1 MHz in 5.36 ms . The linewidth of 16.1 kHz is essentially limited by the 15 kHz resolution bandwidth setting of the spectrum analyzer.

Fig. 4
Fig. 4

Beat-note signal power at the carrier frequency versus spectrum analyzer RBW. Rectangles (red online) correspond to the measurement with a Agilent E4440A spectrum analyzer (right ordinate), black triangles correspond to the measurement with a Stanford Research Systems SR780 FFT analyzer (left ordinate).

Fig. 5
Fig. 5

PLL cycle error versus time for an open-loop servo bandwidth (unity-gain frequency) of 46 kHz . Cycles are recorded with a dead-time free counter at 1 s gate time.

Metrics