Abstract

An output power of 1.74W at 2.03μm was generated at a slope efficiency of 51% when a double-clad Tm3+-doped silica fiber laser was pumped with high-power 1150nm diode lasers. Pump excited state absorption from the upper laser level populates higher energy levels allowing cross relaxation to repopulate the upper laser level at a quantum efficiency greater than unity and to limit losses relating to additional pump excited state absorption. The output power was scaled to 4.77W when both ends of the fiber were pumped.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. D. Jackson and T. A. King, Opt. Lett. 23, 1462 (1998).
    [CrossRef]
  2. R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, Electron. Lett. 36, 711 (2000).
    [CrossRef]
  3. G. Frith, D. G. Lancaster, and S. D. Jackson, Electron. Lett. 41, 687 (2005).
    [CrossRef]
  4. S. D. Jackson, A. Sabella, and D. G. Lancaster, IEEE J. Sel. Top. Quantum Electron. 13, 567 (2007).
    [CrossRef]
  5. E. Slobodtchikov, P. F. Moulton, and G. Frith, in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper MF2.
  6. D. C. Hanna, I. R. Perry, J. R. Lincoln, and J. E. Townsend, Opt. Commun. 80, 52 (1990).
    [CrossRef]
  7. D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, and A. C. Tropper, Opt. Commun. 78, 187 (1990).
    [CrossRef]
  8. K. S. Kravtsov, I. A. Bufetov, O. I. Medvedkov, E. M. Dianov, M. V. Yashkov, and A. N. Gur'yanov, Quantum Electron. 35, 586 (2005).
    [CrossRef]
  9. F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, Appl. Phys. Lett. 79, 1965 (2001).
    [CrossRef]
  10. S. D. Jackson, F. Bugge, and G. Erbert, Opt. Lett. 32, 2496 (2007).
    [CrossRef] [PubMed]
  11. P. S. Golding, S. D. Jackson, P.-K. Tsai, B. C. Dickinson, and T. A. King, Opt. Commun. 175, 179 (2000).
    [CrossRef]
  12. S. D Jackson and T. A. King, J. Lightwave Technol. 17, 948 (1999).
    [CrossRef]

2007 (2)

S. D. Jackson, A. Sabella, and D. G. Lancaster, IEEE J. Sel. Top. Quantum Electron. 13, 567 (2007).
[CrossRef]

S. D. Jackson, F. Bugge, and G. Erbert, Opt. Lett. 32, 2496 (2007).
[CrossRef] [PubMed]

2005 (2)

G. Frith, D. G. Lancaster, and S. D. Jackson, Electron. Lett. 41, 687 (2005).
[CrossRef]

K. S. Kravtsov, I. A. Bufetov, O. I. Medvedkov, E. M. Dianov, M. V. Yashkov, and A. N. Gur'yanov, Quantum Electron. 35, 586 (2005).
[CrossRef]

2001 (1)

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, Appl. Phys. Lett. 79, 1965 (2001).
[CrossRef]

2000 (2)

P. S. Golding, S. D. Jackson, P.-K. Tsai, B. C. Dickinson, and T. A. King, Opt. Commun. 175, 179 (2000).
[CrossRef]

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, Electron. Lett. 36, 711 (2000).
[CrossRef]

1999 (1)

1998 (1)

1990 (2)

D. C. Hanna, I. R. Perry, J. R. Lincoln, and J. E. Townsend, Opt. Commun. 80, 52 (1990).
[CrossRef]

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, and A. C. Tropper, Opt. Commun. 78, 187 (1990).
[CrossRef]

Appl. Phys. Lett. (1)

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, Appl. Phys. Lett. 79, 1965 (2001).
[CrossRef]

Electron. Lett. (2)

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, Electron. Lett. 36, 711 (2000).
[CrossRef]

G. Frith, D. G. Lancaster, and S. D. Jackson, Electron. Lett. 41, 687 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. D. Jackson, A. Sabella, and D. G. Lancaster, IEEE J. Sel. Top. Quantum Electron. 13, 567 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (3)

P. S. Golding, S. D. Jackson, P.-K. Tsai, B. C. Dickinson, and T. A. King, Opt. Commun. 175, 179 (2000).
[CrossRef]

D. C. Hanna, I. R. Perry, J. R. Lincoln, and J. E. Townsend, Opt. Commun. 80, 52 (1990).
[CrossRef]

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, and A. C. Tropper, Opt. Commun. 78, 187 (1990).
[CrossRef]

Opt. Lett. (2)

Quantum Electron. (1)

K. S. Kravtsov, I. A. Bufetov, O. I. Medvedkov, E. M. Dianov, M. V. Yashkov, and A. N. Gur'yanov, Quantum Electron. 35, 586 (2005).
[CrossRef]

Other (1)

E. Slobodtchikov, P. F. Moulton, and G. Frith, in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper MF2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simplified energy level diagram of the Tm 3 + ion showing the ground-state absorption (GSA), excited-state absorption (ESA), cross-relaxation (CR), and laser processes.

Fig. 2
Fig. 2

Absorption cross section of the H 5 3 level measured from a Tm 3 + -doped aluminosilicate preform. The tail in the short wavelength region of the spectrum is an experimental artifact. The inset shows a schematic of the experimental setup. D 1 , D 2 , D 3 , and D 4 represent the individual diode laser sources.

Fig. 3
Fig. 3

Output power, P out , at 2.03 μ m measured as a function of the launched pump power, P L , for 1150 nm single-end pumping ( L = 3.3 m ) and for 805 nm single-end pumping ( L = 2.1 m ) . The upper inset shows the internal and external slope efficiency η s measured as a function of the length, L. The lower inset shows the optical spectrum of the output measured at full pump power.

Fig. 4
Fig. 4

Output power, P out , at 2.03 μ m measured as a function of the launched pump power, P L , for 1150 nm dual-end pumping, L = 3.8 m . The upper and lower insets show the G 4 1 H 6 3 fluorescence and H 4 3 H 6 3 fluorescence, respectively, measured for fiber lasers with and without the dielectric mirror in place, L = 3.8 m , P L = 3.1 W .

Metrics