Abstract

A lensless dual random phase encoding technique in the temporal domain is proposed and analyzed to evaluate its potential application for secure data transmission, mainly for short-haul fiber optic links. The different signal broadening effects produced by each stage of the encoding process in both time and frequency domains are analyzed by using the Wigner distribution function to take into account the fiber's multiplexing capabilities. Thus, quasi-white noise with a well-defined bandwidth is used in the encoding process to limit the bandwidth of the encrypted signal. Numerical simulations revealed good system performance, indicating that this multiplexing encryption method could be a good alternative to other well-established techniques.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. Situ and J. Zhang, Opt. Lett. 29, 1584 (2004).
    [CrossRef] [PubMed]
  2. P. Réfrégier and B. Javidi, Opt. Lett. 20, 767 (1995).
    [CrossRef] [PubMed]
  3. N. Towghi, B. Javidi, and Z. Luo, J. Opt. Soc. Am. A 16, 1915 (1999).
    [CrossRef]
  4. O. Matoba and B. Javidi, Opt. Lett. 24, 762 (1999).
    [CrossRef]
  5. G. Unnikrishnan, J. Joseph, and K. Singh, Opt. Lett. 25, 887 (2000).
    [CrossRef]
  6. B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
    [CrossRef]
  7. A. Papoulis, J. Opt. Soc. Am. A 11, 3 (1994).
    [CrossRef]
  8. J. Azaña and L. R. Chen, J. Opt. Soc. Am. B 20, 1447 (2003).
    [CrossRef]
  9. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform (Wiley, 2001).
  10. B. M. Hennelly, T. J. Naughton, J. McDonald, J. T. Sheridan, G. Unnikrishnan, D. P. Kelly, and B. Javidi, Opt. Lett. 32, 1060 (2007).
    [CrossRef] [PubMed]
  11. T. Nomura, E. Nitanai, T. Numata, and B. Javidi, Opt. Eng. 45, 17006 (1) (2006.)
    [CrossRef]
  12. X. Peng, H. Wei, and P. Zhang, Opt. Lett. 31, 3261 (2006).
    [CrossRef] [PubMed]

2007

2006

X. Peng, H. Wei, and P. Zhang, Opt. Lett. 31, 3261 (2006).
[CrossRef] [PubMed]

T. Nomura, E. Nitanai, T. Numata, and B. Javidi, Opt. Eng. 45, 17006 (1) (2006.)
[CrossRef]

2004

2003

2000

1999

1995

1994

A. Papoulis, J. Opt. Soc. Am. A 11, 3 (1994).
[CrossRef]

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Scheme of the LDRPE photonic device. To encode f ( t ) into a white stationary sequence ψ ( t ) , first it is phase modulated by p ( t ) , then it is transmitted through a first-order dispersive medium, r ( t ) . The whole process is performed once again, this time with q ( t ) and s ( t ) . At the output the encoded signal is obtained, ψ ( t ) . To decode, we just partially reverse the encoding process.

Fig. 2
Fig. 2

Single-channel behavior of the temporal LDRPE technique. (a) Input optical signal, (b) transmitted encoded signal, (c) decoded signal by the whole set of correct keys [i.e., b ( t ) , Φ 20 ( r ) , and Φ 20 ( s ) ], (d) eavesdroper’s measurement with just one unknown key, b ( t ) , whereas Φ 20 ( r ) and Φ 20 ( s ) are assumed to be known.

Tables (1)

Tables Icon

Table 1 Temporal and Spectral Spreading in the LDRPE

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

{ f ( t ) , F ( ν ) } 0 { t , ν } > { Δ t f , Δ ν f } ,
W f ( t , ν ) = f ( t + t 2 ) f * ( t t 2 ) exp ( i 2 π ν t ) d t .
W f 1 f 2 ( t , ν ) = W f 1 ( t , ν ν ) W f 2 ( t , ν ) d ν ,
W f 1 * f 2 ( t , ν ) = W f 1 ( t t , ν ) W f 2 ( t , ν ) d t .
Δ t ψ = m { m { Δ t f , Δ t p } + Δ t r , Δ t q } + Δ t s ,
Δ ν ψ = m { m { Δ ν f + Δ ν p , Δ ν r } + Δ ν q , Δ ν s } .
Δ t ψ = Δ t f + Δ t r + Δ t s ,
Δ ν ψ = Δ ν f + Δ ν p + Δ ν q .

Metrics