Abstract

We present a concept of standing-wave optical frequency conversion in dispersive microcavities theoretically and experimentally, allowing efficient ultracompact nonlinear photonics. We developed a time-dependent model, incorporating the dispersion into the structure of the spatial cavity modes, where the conversion efficiency is enhanced by the optimization of a nonlinear cavity mode overlap. We designed and fabricated integrated double-resonance semiconductor microcavities for standing-wave second-harmonic generation. The measured efficiency exhibits a significant maximum near the cavity resonance owing to the intracavity power enhancement and the dispersion-induced wavelength detuning effect on the mode overlap, in good agreement with our theoretical predictions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Venugopal Rao, K. Moutzouris, and M. Ebrahimzadeh, J. Opt. A 6, 569 (2004).
    [CrossRef]
  2. D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, IEEE J. Quantum Electron. 40, 1122 (2004).
    [CrossRef]
  3. Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, Opt. Lett. 32, 826 (2007).
    [CrossRef] [PubMed]
  4. P. Herskind, J. Lindballe, C. Clausen, J. L. Sørensen, and M. Drewsen, Opt. Lett. 32, 268 (2007).
    [CrossRef] [PubMed]
  5. G. Klemens, C.-H. Chen, and Y. Fainman, Opt. Express 13, 9388 (2005).
    [CrossRef] [PubMed]
  6. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995).
    [CrossRef] [PubMed]
  7. G. Leo and E. Rosencher, Opt. Lett. 23, 1823 (1998).
    [CrossRef]
  8. L. Lanco, S. Ducci, J. P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, Phys. Rev. Lett. 97, 173901 (2006).
    [CrossRef] [PubMed]
  9. J. Jing, S. Feng, R. Bloomer, and O. Pfister, Phys. Rev. A 74, 041804(R) (2006).
  10. K. Banaszek, A. B. U'Ren, and I. A. Walmsley, Opt. Lett. 26, 1367 (2001).
    [CrossRef]
  11. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998).
    [CrossRef]
  12. A. De Rossi, V. Berger, G. Leo, and G. Assanto, IEEE J. Quantum Electron. 41, 1293 (2005).
    [CrossRef]
  13. Z. Y. Ou and Y. J. Lu, Phys. Rev. Lett. 83, 2556 (1999).
    [CrossRef]
  14. A. Hayat and M. Orenstein, Appl. Phys. Lett. 89, 171108 (2006).
    [CrossRef]
  15. A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, 1997).
  16. A. Fiore, E. Rosencher, V. Berger, and J. Nagle, Appl. Phys. Lett. 67, 3765 (1995).
    [CrossRef]

2007

2006

L. Lanco, S. Ducci, J. P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

J. Jing, S. Feng, R. Bloomer, and O. Pfister, Phys. Rev. A 74, 041804(R) (2006).

A. Hayat and M. Orenstein, Appl. Phys. Lett. 89, 171108 (2006).
[CrossRef]

2005

A. De Rossi, V. Berger, G. Leo, and G. Assanto, IEEE J. Quantum Electron. 41, 1293 (2005).
[CrossRef]

G. Klemens, C.-H. Chen, and Y. Fainman, Opt. Express 13, 9388 (2005).
[CrossRef] [PubMed]

2004

S. Venugopal Rao, K. Moutzouris, and M. Ebrahimzadeh, J. Opt. A 6, 569 (2004).
[CrossRef]

D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, IEEE J. Quantum Electron. 40, 1122 (2004).
[CrossRef]

2001

1999

Z. Y. Ou and Y. J. Lu, Phys. Rev. Lett. 83, 2556 (1999).
[CrossRef]

1998

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998).
[CrossRef]

G. Leo and E. Rosencher, Opt. Lett. 23, 1823 (1998).
[CrossRef]

1995

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

A. Fiore, E. Rosencher, V. Berger, and J. Nagle, Appl. Phys. Lett. 67, 3765 (1995).
[CrossRef]

Appl. Phys. Lett.

A. Hayat and M. Orenstein, Appl. Phys. Lett. 89, 171108 (2006).
[CrossRef]

A. Fiore, E. Rosencher, V. Berger, and J. Nagle, Appl. Phys. Lett. 67, 3765 (1995).
[CrossRef]

IEEE J. Quantum Electron.

A. De Rossi, V. Berger, G. Leo, and G. Assanto, IEEE J. Quantum Electron. 41, 1293 (2005).
[CrossRef]

D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, IEEE J. Quantum Electron. 40, 1122 (2004).
[CrossRef]

J. Opt. A

S. Venugopal Rao, K. Moutzouris, and M. Ebrahimzadeh, J. Opt. A 6, 569 (2004).
[CrossRef]

Nature

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

J. Jing, S. Feng, R. Bloomer, and O. Pfister, Phys. Rev. A 74, 041804(R) (2006).

Phys. Rev. Lett.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

L. Lanco, S. Ducci, J. P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

Z. Y. Ou and Y. J. Lu, Phys. Rev. Lett. 83, 2556 (1999).
[CrossRef]

Other

A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic drawing of the integrated double-resonance microcavity. (b) Calculated (FDTD) SH cavity mode two-dimensional intensity distribution in the QW region (arb. u.). (c) Calculated (FDTD) pump cavity mode two-dimensional intensity distribution in the QW region (arb. u.).

Fig. 2
Fig. 2

Scanning electron microscopy (SEM) image of the fabricated integrated double-resonance microcavity. The inset is a SEM cross-section image of the shortest period grating.

Fig. 3
Fig. 3

(a) Measured SH generation efficiency P out P in 2 wavelength dependence. The inset is the microcavity transmission spectrum around the 1512 nm resonance. The solid curve is the measured and the dashed curve is the calculated (FDTD) spectrum. (b) Nonlinear mode overlap γ wavelength dependence. The solid curve is the measured and the dashed curve is the calculated spectrum.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

2 E ̃ 2 ( r , t ) = μ ϵ 2 E ̃ 2 ( r , t ) t 2 + χ ( 2 ) 2 2 ( E ̃ 1 ( r , t ) ) 2 t 2 ,
E ̃ 1 ( r , t ) = E 1 ( t ) e i ω 1 t F 1 ( r ) ,
E ̃ 2 ( r , t ) = E 2 ( t ) e i ω 2 t F 2 ( r ) ,
E 2 ( t ) e i ω 2 t 2 F 2 ( r ) = μ ϵ 2 [ 2 i ω 2 E 2 ( t ) t ω 2 2 E 2 ( t ) ] e i ω 2 t F 2 ( r ) μ χ ( 2 ) 2 ω 2 2 E 1 2 ( t ) e i ω 2 t F 1 2 ( r ) ,
E 2 ( t ) t = 1 2 i [ d r F 2 * ( r ) 2 F 2 ( r ) μ ϵ 2 ω 2 + ω 2 ] E 2 ( t ) + i γ χ ( 2 ) ω 2 4 ϵ 2 E 1 2 ( t ) ,
E 2 ( t ) t = i γ χ ( 2 ) ω 2 4 ϵ 2 E 1 2 ( t ) α 2 E 2 ( t ) .
E 2 ( t ) = i γ χ ( 2 ) ω 2 2 ϵ 2 α E 1 2 ( 1 e α 2 t ) ,
P 2 = 1 ϵ 2 ϵ 1 2 γ χ ( 2 ) ω 2 2 α 2 P 1 2 .
β = β 0 ± i κ 2 ( Δ β ) 2 ,

Metrics