Abstract

We propose and analyze a new photonic system to change the scale of the optical power spectrum of an ultrashort pulse. Our device corresponds to the dual (spectral domain) configuration of a temporal imaging system. It is configured with two time lenses separated by a linear first-order dispersive medium. The specific relation between the chirp rates and the first-order dispersion coefficient is obtained. The main practical constraints are discussed, and the system performance is tested by means of a numerical simulation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. H. Kolner and M. Nazarathy, Opt. Lett. 14, 630 (1989).
    [CrossRef] [PubMed]
  2. C. V. Bennet and B. H. Kolner, Opt. Lett. 24, 783 (1999).
    [CrossRef]
  3. C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 36, 430 (2000).
    [CrossRef]
  4. M. Tsang and D. Psaltis, Phys. Rev. A 73, 013822 (2006).
    [CrossRef]
  5. J. Azaña, N. K. Berger, B. Levit, and B. Fischer, IEEE Photon. Technol. Lett. 17, 94 (2005).
    [CrossRef]
  6. A. Papoulis, J. Opt. Soc. Am. 58, 653 (1968).
    [CrossRef]
  7. J. Azaña, N. K. Berger, B. Levit, and B. Fischer, IEEE Photon. Technol. Lett. 16, 882 (2004).
    [CrossRef]
  8. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  9. V. Torres-Company, H. Lajunen, and A. T. Friberg, J. Opt. Soc. Am. B 24, 1441 (2007).
    [CrossRef]
  10. A. F. Lohmann and D. Mendlovic, Appl. Opt. 31, 6212 (1992).
    [CrossRef] [PubMed]
  11. D. Mendlovic, O. Melamed, and H. M. Ozaktas, Appl. Opt. 34, 4113 (1995).
    [CrossRef] [PubMed]
  12. C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 37, 20 (2001).
    [CrossRef]
  13. T. Hirooka and M. Nakazawa, J. Lightwave Technol. 24, 2530 (2006).
    [CrossRef]

2007 (1)

2006 (3)

T. Hirooka and M. Nakazawa, J. Lightwave Technol. 24, 2530 (2006).
[CrossRef]

M. Tsang and D. Psaltis, Phys. Rev. A 73, 013822 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

2005 (1)

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, IEEE Photon. Technol. Lett. 17, 94 (2005).
[CrossRef]

2004 (1)

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, IEEE Photon. Technol. Lett. 16, 882 (2004).
[CrossRef]

2001 (1)

C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 37, 20 (2001).
[CrossRef]

2000 (1)

C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 36, 430 (2000).
[CrossRef]

1999 (1)

1995 (1)

1992 (1)

1989 (1)

1968 (1)

Appl. Opt. (2)

IEEE J. Quantum Electron. (2)

C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 37, 20 (2001).
[CrossRef]

C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 36, 430 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, IEEE Photon. Technol. Lett. 17, 94 (2005).
[CrossRef]

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, IEEE Photon. Technol. Lett. 16, 882 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. A (1)

M. Tsang and D. Psaltis, Phys. Rev. A 73, 013822 (2006).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Spectral imaging system for magnifying or compressing optical power spectrum without altering the initial amplitude distribution and (b) dual equivalent temporal imaging system.

Fig. 2
Fig. 2

(a) Input power spectrum, (b) output power spectrum. A 4 × magnification is achieved.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E in ( ω ) = e in ( t ) e j ω t d t ,
E out ( ω ) = 2 π m e j 1 2 a ω 2 × e in ( t ) e j 1 2 t 2 ( K 1 1 Φ 2 1 Φ 2 2 ( K 2 1 Φ 2 ) ) e j ω m t d t ,
a = Φ 2 ( Φ 2 K 2 1 ) , m = 1 Φ 2 K 2 .
1 K 1 + 1 K 2 = Φ 2 ,
E out ( ω ) 2 = 1 m E in ( ω m ) 2 .
σ T 1 ,
1 σ 2 + K 1 2 3 β 2 β 3 .
σ ( 1 Φ 2 K 1 ) 2 + ( Φ 2 σ 2 ) 2 T 2 .

Metrics