Abstract

We study theoretically the mechanisms by which optical absorption is enhanced in an optical nanostructure consisting of a slab waveguide, made of a-Si:H, sandwiched between a periodic array of metallic nanowires and a substrate, both made of Au. We demonstrate that for the TM polarization the optical absorption in the slab waveguide can be enhanced by almost an order of magnitude by the excitation of plasmon modes, whereas for both the TM and TE polarizations the grating-induced excitation of slab waveguide modes leads to more than twofold enhancement of the optical absorption.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  2. J. Cole and N. J. Halas, Appl. Phys. Lett. 89, 153120 (2006).
    [CrossRef]
  3. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, Appl. Phys. Lett. 89, 093103 (2006).
    [CrossRef]
  4. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, Appl. Phys. Lett. 89, 151116 (2006).
    [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
    [CrossRef] [PubMed]
  6. H. R. Stuart and D. G. Hall, Phys. Rev. Lett. 80, 5663 (1998).
    [CrossRef]
  7. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, Phys. Rev. Lett. 91, 183901 (2003).
    [CrossRef] [PubMed]
  8. W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, Nano Lett. 6, 1027 (2006).
    [CrossRef]
  9. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
    [CrossRef] [PubMed]
  10. I. I. Smolyaninov, A. V. Zayats, A. Stanishevsky, and C. C. Davis, Phys. Rev. B 66, 205414 (2002).
    [CrossRef]
  11. N. C. Panoiu and R. M. Osgood, Nano Lett. 4, 2427 (2004).
    [CrossRef]
  12. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. A 3, 1780 (1986).
    [CrossRef]
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  14. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).
    [CrossRef]
  15. A. Reisinger, Appl. Opt. 12, 1015 (1973).
    [CrossRef] [PubMed]

2006 (5)

J. Cole and N. J. Halas, Appl. Phys. Lett. 89, 153120 (2006).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, Nano Lett. 6, 1027 (2006).
[CrossRef]

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

2005 (1)

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

2004 (1)

N. C. Panoiu and R. M. Osgood, Nano Lett. 4, 2427 (2004).
[CrossRef]

2003 (2)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

2002 (1)

I. I. Smolyaninov, A. V. Zayats, A. Stanishevsky, and C. C. Davis, Phys. Rev. B 66, 205414 (2002).
[CrossRef]

1998 (2)

1986 (1)

1973 (1)

Appl. Opt. (2)

Appl. Phys. Lett. (4)

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

J. Cole and N. J. Halas, Appl. Phys. Lett. 89, 153120 (2006).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (2)

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, Nano Lett. 6, 1027 (2006).
[CrossRef]

N. C. Panoiu and R. M. Osgood, Nano Lett. 4, 2427 (2004).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Phys. Rev. B (1)

I. I. Smolyaninov, A. V. Zayats, A. Stanishevsky, and C. C. Davis, Phys. Rev. B 66, 205414 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

H. R. Stuart and D. G. Hall, Phys. Rev. Lett. 80, 5663 (1998).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Top panel, schematics of the periodic structure. Middle panels, dispersion curves for the plasmon ( TM 1 ) and slab waveguide modes, in momentum space (left) and the modes folded back in the first BZ with Λ = 350 nm (right). Bottom plots, the spectra of the absorption A (solid curve) and reflectivity R (dotted curve) for Λ = 350 nm and w = 100 nm , and the reflectivity without the grating (dashed curve).

Fig. 2
Fig. 2

Top panels, contour plots of A ( λ , Λ ) . Bottom left (right) panels show the distribution of the magnetic (electric) field, corresponding to the modes indicated by the arrows in the top panels. The dotted contours mark the position of the Au nanowires. In all cases w = 100 nm .

Fig. 3
Fig. 3

Enhancement η corresponding to the (a) SPP and (b) waveguide modes (TM polarization) for w = 80 nm (dotted curve), w = 100 nm (solid curve), and w = 120 nm (dashed curve). In the insets, η ( λ ) for (a) Λ = 908 nm and (b) Λ = 680 nm . In (c), η versus λ (TE polarization).

Fig. 4
Fig. 4

Enhancement η corresponding to the (a) plasmon and (b) waveguide modes (TM polarization), calculated for gratings with w = 100 nm .

Metrics