Abstract

We have measured the absolute frequency of the excited state transition 5P324D52 in a Rb87 atom with a femtosecond frequency comb, utilizing the recently developed spectroscopic technique of the double resonance optical pumping method. The absolute energy level of the 4D52 state is determined by measuring the absolute frequency of the 5S125P32 transition simultaneously. The hyperfine structure constants of the 4D52 state are obtained by using the measured frequency. The magnetic dipole constant, A, is determined to be (16.747±0.010)MHz with an uncertainty reduced 60-fold compared with a previous result. The electric quadrupole constant, B, is determined, for what is to our knowledge the first time, to be (4.149±0.059)MHz.

© 2007 Optical Society of America

Full Article  |  PDF Article

Corrections

Won-Kyu Lee, Han Seb Moon, and Ho Suhng Suh, "Measurement of the absolute energy level and hyperfine structure of the 87Rb 4D5/2 state: erratum," Opt. Lett. 40, 2111-2111 (2015)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-40-9-2111

References

  • View by:
  • |
  • |

  1. W. C. Magno, R. L. C. Filho, and F. C. Cruz, Phys. Rev. A 67, 043407 (2003).
    [CrossRef]
  2. L. Hollberg and J. L. Hall, Phys. Rev. Lett. 53, 230 (1984).
    [CrossRef]
  3. R. Beigang, W. Makat, A. Timmermann, and P. J. West, Phys. Rev. Lett. 51, 771 (1983).
    [CrossRef]
  4. A. J. Lucero, Y. C. Chung, S. Reilly, and R. W. Tkach, Opt. Lett. 16, 849 (1991).
    [CrossRef] [PubMed]
  5. M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, and C. Latrasse, IEEE Trans. Instrum. Meas. 44, 162 (1995).
    [CrossRef]
  6. H. Sasada, IEEE Photon. Technol. Lett. 4, 1307 (1992).
    [CrossRef]
  7. H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, Appl. Phys. Lett. 85, 3965 (2004).
    [CrossRef]
  8. H. S. Moon, L. Lee, and J. B. Kim, J. Opt. Soc. Am. B 24, 2157 (2007).
    [CrossRef]
  9. K. H. Liao, L. K. Lam, R. Gupta, and W. Happer, Phys. Rev. Lett. 32, 1340 (1974).
    [CrossRef]
  10. E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
    [CrossRef]
  11. F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, and F. Tauser, Opt. Express 12, 5872 (2004).
    [CrossRef] [PubMed]
  12. J. Ye, S. Swartz, P. Jungner, and J. L. Hall, Opt. Lett. 21, 1280 (1996).
    [CrossRef] [PubMed]
  13. G. P. Barwood, P. Gill, and W. R. C. Rowley, Appl. Phys. B. 53, 142 (1991).
    [CrossRef]
  14. K. L. Corwin, I. Thomann, T. Dennis, R. W. Fox, W. Swann, E. A. Curtis, C. W. Oates, G. Wilpers, A. Bartels, S. L. Gilbert, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. F. Yan, Opt. Lett. 29, 397 (2004).
    [CrossRef] [PubMed]

2007 (1)

2004 (3)

2003 (1)

W. C. Magno, R. L. C. Filho, and F. C. Cruz, Phys. Rev. A 67, 043407 (2003).
[CrossRef]

1996 (1)

1995 (1)

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, and C. Latrasse, IEEE Trans. Instrum. Meas. 44, 162 (1995).
[CrossRef]

1992 (1)

H. Sasada, IEEE Photon. Technol. Lett. 4, 1307 (1992).
[CrossRef]

1991 (2)

G. P. Barwood, P. Gill, and W. R. C. Rowley, Appl. Phys. B. 53, 142 (1991).
[CrossRef]

A. J. Lucero, Y. C. Chung, S. Reilly, and R. W. Tkach, Opt. Lett. 16, 849 (1991).
[CrossRef] [PubMed]

1984 (1)

L. Hollberg and J. L. Hall, Phys. Rev. Lett. 53, 230 (1984).
[CrossRef]

1983 (1)

R. Beigang, W. Makat, A. Timmermann, and P. J. West, Phys. Rev. Lett. 51, 771 (1983).
[CrossRef]

1977 (1)

E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
[CrossRef]

1974 (1)

K. H. Liao, L. K. Lam, R. Gupta, and W. Happer, Phys. Rev. Lett. 32, 1340 (1974).
[CrossRef]

Appl. Phys. B. (1)

G. P. Barwood, P. Gill, and W. R. C. Rowley, Appl. Phys. B. 53, 142 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, Appl. Phys. Lett. 85, 3965 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Sasada, IEEE Photon. Technol. Lett. 4, 1307 (1992).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, and C. Latrasse, IEEE Trans. Instrum. Meas. 44, 162 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

W. C. Magno, R. L. C. Filho, and F. C. Cruz, Phys. Rev. A 67, 043407 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

L. Hollberg and J. L. Hall, Phys. Rev. Lett. 53, 230 (1984).
[CrossRef]

R. Beigang, W. Makat, A. Timmermann, and P. J. West, Phys. Rev. Lett. 51, 771 (1983).
[CrossRef]

K. H. Liao, L. K. Lam, R. Gupta, and W. Happer, Phys. Rev. Lett. 32, 1340 (1974).
[CrossRef]

Rev. Mod. Phys. (1)

E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for DROP spectroscopy and absolute frequency measurement. PBS, polarizing beam splitter; SAS, saturated absorption spectroscopy setup; DM, dichroic mirror (reflection at 780 nm , transmission at 1529 nm ); AP, aperture; PD, Si photodiode; for the other acronyms, refer to the main text.

Fig. 2
Fig. 2

(a) Energy level diagram for the transitions. (b) DROP spectrum of Rb 87 , 5 P 3 2 ( F = 3 ) 4 D 5 2 ( F = 2 , 3 , 4 ) transition and (c) its error signal.

Fig. 3
Fig. 3

Allan deviations of the L1 laser stabilized at 780 nm using SAS (empty circles), the L2 laser at 1529 nm using DROP (filled circles), and the absolute energy level of the 4 D 5 2 state (filled triangles).

Tables (1)

Tables Icon

Table 1 Result of the Absolute Frequency of the Rb 87 , 5 P 3 2 4 D 5 2 Transition and the 4 D 5 2 Absolute Energy Level

Metrics