Abstract

Laser Doppler imaging has been widely used for the evaluation of cutaneous blood flow. We report on how the self-mixing interferometry configuration with a laser diode is explored for what is belived to be the first time to generate flow maps. The experiment was carried out by sensing the laser intensity power spectrum at each pixel as the laser was scanned over a model that mimics the properties of skin and circulating blood.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Murray, A. Herrick, and T. King, Rheumatology 43, 1210 (2004).
    [CrossRef] [PubMed]
  2. A. Murray, A. Herrick, T. Moore, T. King, and C. Griffiths, Br. J. Dermatol. 152, 1182 (2005).
    [CrossRef] [PubMed]
  3. C. H. Lu, J. Wang, and K. L. Deng, Appl. Phys. Lett. 66, 2022 (1995).
    [CrossRef]
  4. E. Gagnon and J. F. Rivest, IEEE Trans. Instrum. Meas. 48, 693 (1999).
    [CrossRef]
  5. T. Bosch, N. Servagent, R. Chellali, and M. Lescure, IEEE Trans. Instrum. Meas. 47, 1326 (1998).
    [CrossRef]
  6. R. Day, E. Lacot, F. Stoeckel, and B. Berge, Appl. Opt. 40, 1921 (2001).
    [CrossRef]
  7. E. Lacot, R. Day, and F. Stoeckel, Opt. Lett. 24, 744 (1999).
    [CrossRef]
  8. E. Lacot, R. Day, and F. Stoeckel, Phys. Rev. A 64, 43815 (2001).
    [CrossRef]
  9. E. Lacot, R. Day, J. Pinel, and F. Stoeckel, Opt. Lett. 26, 1483 (2001).
    [CrossRef]
  10. M. Slot, M. Koelink, F. Scholten, F. de Mul, A. Weijers, J. Greve, R. Graaff, A. Dassel, J. Aarnoudse, and F. Tuynman, Med. Biol. Eng. Comput. 30, 441 (1992).
    [CrossRef] [PubMed]
  11. F. de Mul, M. Koelink, A. Weijers, J. Greve, J. Aarnoudse, R. Graaff, and A. Dassel, Appl. Opt. 31, 5844 (1992).
    [CrossRef]
  12. F. de Mul, L. Scalise, A. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, Appl. Opt. 41, 658 (2002).
    [CrossRef] [PubMed]
  13. C. Zakian, M. Dickinson, and T. King, J. Opt. A, Pure Appl. Opt. 7, 445 (2005).
    [CrossRef]
  14. M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, Lasers Surg. Med. 28, 237 (2001).
    [CrossRef] [PubMed]
  15. D. J. I. Tritton, Physical Fluid, Dynamics, 2nd ed. (Oxford Science, 1998).
  16. C. L. Crofcheck, F. A. Payne, and M. P. Menguc, Appl. Opt. 41, 2028 (2002).
    [CrossRef] [PubMed]
  17. A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, J. Phys. D 38, 2543 (2005).
    [CrossRef]
  18. C. Zakian and M. Dickinson, "Laser Doppler flowmetry through tissue phantoms using self-mixing interferometry with a laser diode," to be submitted to J. Biomed. Opt.
  19. A. Michelson, B. Schmauss, M. J. Langhans, J. Harazny, and M. J. M. Groh, J. Glaucoma 5, 99 (1996).
    [PubMed]

2005 (3)

A. Murray, A. Herrick, T. Moore, T. King, and C. Griffiths, Br. J. Dermatol. 152, 1182 (2005).
[CrossRef] [PubMed]

C. Zakian, M. Dickinson, and T. King, J. Opt. A, Pure Appl. Opt. 7, 445 (2005).
[CrossRef]

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, J. Phys. D 38, 2543 (2005).
[CrossRef]

2004 (1)

A. Murray, A. Herrick, and T. King, Rheumatology 43, 1210 (2004).
[CrossRef] [PubMed]

2002 (2)

2001 (4)

R. Day, E. Lacot, F. Stoeckel, and B. Berge, Appl. Opt. 40, 1921 (2001).
[CrossRef]

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, Lasers Surg. Med. 28, 237 (2001).
[CrossRef] [PubMed]

E. Lacot, R. Day, and F. Stoeckel, Phys. Rev. A 64, 43815 (2001).
[CrossRef]

E. Lacot, R. Day, J. Pinel, and F. Stoeckel, Opt. Lett. 26, 1483 (2001).
[CrossRef]

1999 (2)

E. Gagnon and J. F. Rivest, IEEE Trans. Instrum. Meas. 48, 693 (1999).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, Opt. Lett. 24, 744 (1999).
[CrossRef]

1998 (1)

T. Bosch, N. Servagent, R. Chellali, and M. Lescure, IEEE Trans. Instrum. Meas. 47, 1326 (1998).
[CrossRef]

1996 (1)

A. Michelson, B. Schmauss, M. J. Langhans, J. Harazny, and M. J. M. Groh, J. Glaucoma 5, 99 (1996).
[PubMed]

1995 (1)

C. H. Lu, J. Wang, and K. L. Deng, Appl. Phys. Lett. 66, 2022 (1995).
[CrossRef]

1992 (2)

M. Slot, M. Koelink, F. Scholten, F. de Mul, A. Weijers, J. Greve, R. Graaff, A. Dassel, J. Aarnoudse, and F. Tuynman, Med. Biol. Eng. Comput. 30, 441 (1992).
[CrossRef] [PubMed]

F. de Mul, M. Koelink, A. Weijers, J. Greve, J. Aarnoudse, R. Graaff, and A. Dassel, Appl. Opt. 31, 5844 (1992).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

C. H. Lu, J. Wang, and K. L. Deng, Appl. Phys. Lett. 66, 2022 (1995).
[CrossRef]

Br. J. Dermatol. (1)

A. Murray, A. Herrick, T. Moore, T. King, and C. Griffiths, Br. J. Dermatol. 152, 1182 (2005).
[CrossRef] [PubMed]

IEEE Trans. Instrum. Meas. (2)

E. Gagnon and J. F. Rivest, IEEE Trans. Instrum. Meas. 48, 693 (1999).
[CrossRef]

T. Bosch, N. Servagent, R. Chellali, and M. Lescure, IEEE Trans. Instrum. Meas. 47, 1326 (1998).
[CrossRef]

J. Glaucoma (1)

A. Michelson, B. Schmauss, M. J. Langhans, J. Harazny, and M. J. M. Groh, J. Glaucoma 5, 99 (1996).
[PubMed]

J. Opt. A, Pure Appl. Opt. (1)

C. Zakian, M. Dickinson, and T. King, J. Opt. A, Pure Appl. Opt. 7, 445 (2005).
[CrossRef]

J. Phys. D (1)

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, J. Phys. D 38, 2543 (2005).
[CrossRef]

Lasers Surg. Med. (1)

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, Lasers Surg. Med. 28, 237 (2001).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

M. Slot, M. Koelink, F. Scholten, F. de Mul, A. Weijers, J. Greve, R. Graaff, A. Dassel, J. Aarnoudse, and F. Tuynman, Med. Biol. Eng. Comput. 30, 441 (1992).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

E. Lacot, R. Day, and F. Stoeckel, Phys. Rev. A 64, 43815 (2001).
[CrossRef]

Rheumatology (1)

A. Murray, A. Herrick, and T. King, Rheumatology 43, 1210 (2004).
[CrossRef] [PubMed]

Other (2)

D. J. I. Tritton, Physical Fluid, Dynamics, 2nd ed. (Oxford Science, 1998).

C. Zakian and M. Dickinson, "Laser Doppler flowmetry through tissue phantoms using self-mixing interferometry with a laser diode," to be submitted to J. Biomed. Opt.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. L1 lens (focal length f = 4.5 mm ), L2 lens (focal length f = 20 mm ), laser diode (LD) with photodiode (PD) in package Sanyo DL4140-001S, laser diode driver (Thorlabs LD1255), 100 kHz low-pass filter amplifier connected to a computer data acquisition card (NI 5911 for PCI). The x y translator motors are computer controlled. The flow model consists of a 1.5 mm tube surrounded by tissue phantom layers.

Fig. 2
Fig. 2

Flow map ( f 0 color coded) for scattering layers (left maps), cosmetic powder based layers (center maps), and skinlike layers (right maps). Layer thickness from top to bottom: no layer employed, 0.42 mm thick layer, 0.70 mm thick layer, and 1.19 mm thick layer. The flow rate for these cases was set to 50 ml h .

Fig. 3
Fig. 3

Flow map ( f 0 color coded) for scattering layers (top row), cosmetic powder based layers (middle row) and skinlike layers (bottom row). Flow rate from left to right: 0 ml h , 25 ml h , and 50 ml h . The thickness of the top layer for these cases was 0.42 mm .

Fig. 4
Fig. 4

Example of the spectra obtained for the 0.42 mm scattering layer at a position showing no flow (graph A) and at a position showing maximum flow (graph B) corresponding to the 50 ml h case. Note that an exponential curve is fitted to the graphs.

Tables (1)

Tables Icon

Table 1 Tissue Phantom Ingredients

Metrics