Abstract

Room-temperature, continuous-wave operation of an external-cavity quantum cascade laser (EC-QCL) is reported. Single-mode tuning range of 120cm1 was achieved, from 7.96 to 8.84μm. The gain chips utilized are based on the bound to continuum design and were fabricated as buried heterostructure lasers. Gap-free tuning (mode hops only on the external-cavity modes) is demonstrated for an antireflection-coated laser, just by grating rotation. The EC-QCL was implemented in a Littrow setup and an average power of 1.5mW was obtained at 20°C, while a peak power of 20mW was obtained for a modified Littrow setup with the back extraction of light.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
    [CrossRef] [PubMed]
  2. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, Appl. Phys. Lett. 89, 081101 (2006).
    [CrossRef]
  3. J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, and M. Razeghi, Appl. Phys. Lett. 88, 091113 (2006).
    [CrossRef]
  4. D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blager, Appl. Phys. B: Photophys. Laser Chem. 79, 907 (2004).
    [CrossRef]
  5. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 70, 2670 (1997).
    [CrossRef]
  6. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W. Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, Appl. Phys. Lett. 78, 2834 (2001).
    [CrossRef]
  7. G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, and J. Zheng, IEEE J. Quantum Electron. 38, 486 (2002).
    [CrossRef]
  8. G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Mueller, Opt. Lett. 20, 1788 (2002).
    [CrossRef]
  9. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, Appl. Phys. Lett. 88, 201113 (2006).
    [CrossRef]
  10. A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, Appl. Phys. Lett. 89, 141116 (2006).
    [CrossRef]
  11. J. Faist, M. Beck, T. Aellen, and E. Gini, Appl. Phys. Lett. 78, 147 (2001).
    [CrossRef]
  12. A. Wittmann, Institute für Quantenelektronik, HPT H 2 Wolfgang-Pauli-Street, 16 8093 Zürich, Switzerland (personal communication, June 1, 2007).
  13. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, Science 295, 301 (2002).
    [CrossRef] [PubMed]
  14. R. Maulini, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 84, 1659 (2004).
    [CrossRef]
  15. R. Maulini, D. A. Yarekha, J.-M. Bulliard, M. Giovannini, J. Faist, and E. Gini, Opt. Lett. 30, 2584 (2005).
    [CrossRef] [PubMed]
  16. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, Appl. Phys. B: Photophys. Laser Chem. 81, 769 (2005).
    [CrossRef]
  17. M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, Proc. Natl. Acad. Sci. U.S.A. 103, 10846 (2006).
    [CrossRef] [PubMed]

2006 (5)

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, Appl. Phys. Lett. 89, 081101 (2006).
[CrossRef]

J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, and M. Razeghi, Appl. Phys. Lett. 88, 091113 (2006).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, Proc. Natl. Acad. Sci. U.S.A. 103, 10846 (2006).
[CrossRef] [PubMed]

2005 (2)

R. Maulini, D. A. Yarekha, J.-M. Bulliard, M. Giovannini, J. Faist, and E. Gini, Opt. Lett. 30, 2584 (2005).
[CrossRef] [PubMed]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, Appl. Phys. B: Photophys. Laser Chem. 81, 769 (2005).
[CrossRef]

2004 (2)

R. Maulini, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 84, 1659 (2004).
[CrossRef]

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blager, Appl. Phys. B: Photophys. Laser Chem. 79, 907 (2004).
[CrossRef]

2002 (3)

G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, and J. Zheng, IEEE J. Quantum Electron. 38, 486 (2002).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, Science 295, 301 (2002).
[CrossRef] [PubMed]

G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Mueller, Opt. Lett. 20, 1788 (2002).
[CrossRef]

2001 (2)

J. Faist, M. Beck, T. Aellen, and E. Gini, Appl. Phys. Lett. 78, 147 (2001).
[CrossRef]

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W. Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, Appl. Phys. Lett. 78, 2834 (2001).
[CrossRef]

1997 (1)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 70, 2670 (1997).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

Appl. Phys. B: Photophys. Laser Chem. (2)

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blager, Appl. Phys. B: Photophys. Laser Chem. 79, 907 (2004).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, Appl. Phys. B: Photophys. Laser Chem. 81, 769 (2005).
[CrossRef]

Appl. Phys. Lett. (8)

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, Appl. Phys. Lett. 89, 081101 (2006).
[CrossRef]

J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, and M. Razeghi, Appl. Phys. Lett. 88, 091113 (2006).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 70, 2670 (1997).
[CrossRef]

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W. Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, Appl. Phys. Lett. 78, 2834 (2001).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

J. Faist, M. Beck, T. Aellen, and E. Gini, Appl. Phys. Lett. 78, 147 (2001).
[CrossRef]

R. Maulini, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 84, 1659 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, and J. Zheng, IEEE J. Quantum Electron. 38, 486 (2002).
[CrossRef]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, Proc. Natl. Acad. Sci. U.S.A. 103, 10846 (2006).
[CrossRef] [PubMed]

Science (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, Science 295, 301 (2002).
[CrossRef] [PubMed]

Other (1)

A. Wittmann, Institute für Quantenelektronik, HPT H 2 Wolfgang-Pauli-Street, 16 8093 Zürich, Switzerland (personal communication, June 1, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Bias voltage and CW optical power of the gain element as a function of the injection current at a heat-sink temperature of 30 ° C for uncoated, HR-coated, and AR-coated gain chip, 9 μ m wide and 3 mm long.

Fig. 2
Fig. 2

(a) Spectra depicting the extremities of tuning obtained with the EC-QCL. (b) Gap-free (hops only on the external cavity) tuning achieved by grating rotation alone.

Fig. 3
Fig. 3

Measured optical power of the external-cavity laser for various emission frequencies. The laser was operated CW at a heat-sink temperature of 20 ° C .

Fig. 4
Fig. 4

Optical power and bias of an EC-QCL obtained with two different configurations as a function of the injection current for two nominally identical 1.5 mm long and 8 μ m wide chips. Inset: modified Littrow configuration with backside extraction.

Metrics