Abstract

A study of the cross-phase modulation (XPM) degradation of differential-phase-shift-keyed (DPSK) signals due to amplitude-shift-keyed signals is performed using pump-probe simulation. Approximate expressions for the contributions of the XPM-induced intensity and phase modulation to the electrical current fluctuations at the differential-phase-exchange-keyed receiver are presented. It is shown that, unlike prior works and similar to intensity-modulated signals, the contribution of XPM-induced intensity modulation is dominant in systems using standard fiber or high residual dispersion.

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |

  1. A. Gnauck and P. Winzer, J. Lightwave Technol. 23, 115 (2005).
    [CrossRef]
  2. M. Rohde, C. Caspar, N. Heimes, M. Konitzer, E. Bachus, and N. Hanik, Electron. Lett. 36, 1483 (2000).
    [CrossRef]
  3. B. Spinnler, N. Denschlag, S. Calabrò, M. Herz, C. Weiske, E. Schmidt, D. Borne, G. Khoe, H. Waardt, R. Griffin, and S. Wadsworth, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper TuF3.
  4. A. Lenihan, G. Tudury, W. Astar, and G. Carter, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CWO5.
  5. H. Griesser, J. Elbers, in Proceedings of the European Conference on Optical Communications, 2006 (ECOC, 2006) (IEEE, 2006), Vol. 2, p. 25.
  6. K. Ho, IEEE J. Sel. Top. Quantum Electron. 10, 421 (2004).
    [CrossRef]
  7. A. Cartaxo, J. Lightwave Technol. 17, 178 (1999).
    [CrossRef]

2005 (1)

2004 (1)

K. Ho, IEEE J. Sel. Top. Quantum Electron. 10, 421 (2004).
[CrossRef]

2000 (1)

M. Rohde, C. Caspar, N. Heimes, M. Konitzer, E. Bachus, and N. Hanik, Electron. Lett. 36, 1483 (2000).
[CrossRef]

1999 (1)

Electron. Lett. (1)

M. Rohde, C. Caspar, N. Heimes, M. Konitzer, E. Bachus, and N. Hanik, Electron. Lett. 36, 1483 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Ho, IEEE J. Sel. Top. Quantum Electron. 10, 421 (2004).
[CrossRef]

J. Lightwave Technol. (2)

Other (3)

B. Spinnler, N. Denschlag, S. Calabrò, M. Herz, C. Weiske, E. Schmidt, D. Borne, G. Khoe, H. Waardt, R. Griffin, and S. Wadsworth, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper TuF3.

A. Lenihan, G. Tudury, W. Astar, and G. Carter, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CWO5.

H. Griesser, J. Elbers, in Proceedings of the European Conference on Optical Communications, 2006 (ECOC, 2006) (IEEE, 2006), Vol. 2, p. 25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics