Abstract

A study of the cross-phase modulation (XPM) degradation of differential-phase-shift-keyed (DPSK) signals due to amplitude-shift-keyed signals is performed using pump–probe simulation. Approximate expressions for the contributions of the XPM-induced intensity and phase modulation to the electrical current fluctuations at the differential-phase-exchange-keyed receiver are presented. It is shown that, unlike prior works and similar to intensity-modulated signals, the contribution of XPM-induced intensity modulation is dominant in systems using standard fiber or high residual dispersion.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Gnauck and P. Winzer, J. Lightwave Technol. 23, 115 (2005).
    [CrossRef]
  2. M. Rohde, C. Caspar, N. Heimes, M. Konitzer, E. Bachus, and N. Hanik, Electron. Lett. 36, 1483 (2000).
    [CrossRef]
  3. B. Spinnler, N. Denschlag, S. Calabrò, M. Herz, C. Weiske, E. Schmidt, D. Borne, G. Khoe, H. Waardt, R. Griffin, and S. Wadsworth, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper TuF3.
  4. A. Lenihan, G. Tudury, W. Astar, and G. Carter, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CWO5.
    [PubMed]
  5. H. Griesser, J. Elbers, in Proceedings of the European Conference on Optical Communications, 2006 (ECOC, 2006) (IEEE, 2006), Vol. 2, p. 25.
  6. K. Ho, IEEE J. Sel. Top. Quantum Electron. 10, 421 (2004).
    [CrossRef]
  7. A. Cartaxo, J. Lightwave Technol. 17, 178 (1999).
    [CrossRef]

2005 (1)

2004 (1)

K. Ho, IEEE J. Sel. Top. Quantum Electron. 10, 421 (2004).
[CrossRef]

2000 (1)

M. Rohde, C. Caspar, N. Heimes, M. Konitzer, E. Bachus, and N. Hanik, Electron. Lett. 36, 1483 (2000).
[CrossRef]

1999 (1)

Electron. Lett. (1)

M. Rohde, C. Caspar, N. Heimes, M. Konitzer, E. Bachus, and N. Hanik, Electron. Lett. 36, 1483 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Ho, IEEE J. Sel. Top. Quantum Electron. 10, 421 (2004).
[CrossRef]

J. Lightwave Technol. (2)

Other (3)

B. Spinnler, N. Denschlag, S. Calabrò, M. Herz, C. Weiske, E. Schmidt, D. Borne, G. Khoe, H. Waardt, R. Griffin, and S. Wadsworth, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper TuF3.

A. Lenihan, G. Tudury, W. Astar, and G. Carter, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CWO5.
[PubMed]

H. Griesser, J. Elbers, in Proceedings of the European Conference on Optical Communications, 2006 (ECOC, 2006) (IEEE, 2006), Vol. 2, p. 25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simplified diagram of the XPM contributions to the electrical current fluctuations at the DPSK receiver output.

Fig. 2
Fig. 2

Simulated transmission system.

Fig. 3
Fig. 3

Eye diagrams of the XPM-induced electrical current fluctuations of the probe. (a) and (b) due to XPM-induced PM; (c) and (d) due to XPM-induced IM; (e) and (f) total XPM-induced current fluctuations; (g) and (h) eye diagrams assuming a 40 Gbit s DPSK probe. The top and bottom rows assume transmission through SSMF and TW with 400 ps nm and null total residual dispersion, respectively.

Fig. 4
Fig. 4

Comparison between the variances of the total XPM-induced current fluctuations and the contributions from the XPM-induced PM and IM obtained through pump-probe analysis using (a) SSMF, 20 sections; and (b) TW, 10 sections. The circles are the OSNR penalty obtained using Monte Carlo simulation.

Tables (1)

Tables Icon

Table 1 Transmission Fiber Parameters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

e s ( t ) = P + p XPM ( t ) × exp [ j ϕ XPM ( t ) ] ,
i d ( t ) = P 1 + Δ p XPM ( t ) P + p XPM ( t ) p XPM ( t T ) P 2 cos [ Δ ϕ XPM ( t ) ] ,
Δ i XPM ( t ) = i d ( t ) P = Δ i p ( t ) + Δ i ϕ ( t ) Δ p XPM ( t ) Δ ϕ XPM 2 ( t ) 4 Δ i p ( t ) + Δ i ϕ ( t ) ,

Metrics