Abstract

Electro-optical tuning of a microring resonator fabricated on lithium niobate (LiNbO3) is presented. The device structure, including microring resonator and couplers, is designed in detail and is produced by titanium diffusion on the wet-etched LiNbO3 ridge surface. The resonance wavelengths for TM and TE polarizations can be tuned by electro-optic effect. The output characteristics of through port and drop port in the microring resonators are measured, and the effect of applied voltage on the shift of resonant wavelength is discussed. The presented microring resonators have the features of fast tuning speed, high material stability, bidirection wavelength shift, and no heating interference. Realization of such a microring resonator on LiNbO3 makes the utilization of electro-optic tuning and nonlinear effects in the versatile photonic applications of microring resonators achievable.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Haeiwa, T. Naganawa, and Y. Kokubun, IEEE Photon. Technol. Lett. 16, 135 (2004).
    [CrossRef]
  2. J. K. S. Poon, Y. Huang, G. T. Paloczi, A. Yariv, and C. Zhang, Opt. Lett. 29, 2584 (2004).
    [CrossRef] [PubMed]
  3. T. J. Wang, Y. H. Huang, and H. L. Chen, IEEE Photon. Technol. Lett. 17, 582 (2005).
    [CrossRef]
  4. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, Appl. Phys. Lett. 89, 071110 (2006).
    [CrossRef]
  5. P. Rabiei and W. H. Steier, IEEE Photon. Technol. Lett. 15, 1255 (2003).
    [CrossRef]
  6. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
    [CrossRef] [PubMed]
  7. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, IEEE Photon. Technol. Lett. 15, 36 (2003).
    [CrossRef]
  8. C. Manolatou and M. Lipson, J. Lightwave Technol. 24, 1433 (2006).
    [CrossRef]
  9. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, J. Lightwave Technol. 20, 1968 (2002).
    [CrossRef]
  10. R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T Ho, IEEE Photon. Technol. Lett. 16, 467 (2004).
    [CrossRef]
  11. B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, Appl. Phys. Lett. 83, 4689 (2003).
    [CrossRef]
  12. A. Mahapatra and W. C. Robinson, Appl. Opt. 24, 2285 (1985).
    [CrossRef] [PubMed]
  13. J. X. Chen, T. Kawanishi, K. Higuma, S. Shinada, J. Hodiak, M. Izutsu, W. S. C. Chang, and P. K. L. Yu, IEEE Photon. Technol. Lett. 16, 2090 (2004).
    [CrossRef]
  14. T. J. Wang, C. F. Huang, and W. S. Wang, J. Lightwave Technol. 22, 1764 (2004).
    [CrossRef]

2006 (2)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

C. Manolatou and M. Lipson, J. Lightwave Technol. 24, 1433 (2006).
[CrossRef]

2005 (2)

T. J. Wang, Y. H. Huang, and H. L. Chen, IEEE Photon. Technol. Lett. 17, 582 (2005).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

2004 (5)

H. Haeiwa, T. Naganawa, and Y. Kokubun, IEEE Photon. Technol. Lett. 16, 135 (2004).
[CrossRef]

R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T Ho, IEEE Photon. Technol. Lett. 16, 467 (2004).
[CrossRef]

J. X. Chen, T. Kawanishi, K. Higuma, S. Shinada, J. Hodiak, M. Izutsu, W. S. C. Chang, and P. K. L. Yu, IEEE Photon. Technol. Lett. 16, 2090 (2004).
[CrossRef]

T. J. Wang, C. F. Huang, and W. S. Wang, J. Lightwave Technol. 22, 1764 (2004).
[CrossRef]

J. K. S. Poon, Y. Huang, G. T. Paloczi, A. Yariv, and C. Zhang, Opt. Lett. 29, 2584 (2004).
[CrossRef] [PubMed]

2003 (3)

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, Appl. Phys. Lett. 83, 4689 (2003).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, IEEE Photon. Technol. Lett. 15, 36 (2003).
[CrossRef]

P. Rabiei and W. H. Steier, IEEE Photon. Technol. Lett. 15, 1255 (2003).
[CrossRef]

2002 (1)

1985 (1)

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, Appl. Phys. Lett. 83, 4689 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

J. X. Chen, T. Kawanishi, K. Higuma, S. Shinada, J. Hodiak, M. Izutsu, W. S. C. Chang, and P. K. L. Yu, IEEE Photon. Technol. Lett. 16, 2090 (2004).
[CrossRef]

P. Rabiei and W. H. Steier, IEEE Photon. Technol. Lett. 15, 1255 (2003).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, IEEE Photon. Technol. Lett. 15, 36 (2003).
[CrossRef]

H. Haeiwa, T. Naganawa, and Y. Kokubun, IEEE Photon. Technol. Lett. 16, 135 (2004).
[CrossRef]

R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T Ho, IEEE Photon. Technol. Lett. 16, 467 (2004).
[CrossRef]

T. J. Wang, Y. H. Huang, and H. L. Chen, IEEE Photon. Technol. Lett. 17, 582 (2005).
[CrossRef]

J. Lightwave Technol. (3)

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Device structure of the electro-optically tunable microring resonator on LiNbO 3 . (Upper-left inset, photograph of the completed device; upper-right inset, image of the output intensity profile).

Fig. 2
Fig. 2

(a) Index distribution and optical intensity profile for TM polarization; (b) electric field distribution in the titanium-diffused ridge waveguide of the 100 μ m radius microring resonator. (The interval of index contour lines is 0.05 of the maximum index increment; the difference between two adjacent field contour lines is 1 dB .)

Fig. 3
Fig. 3

Tuning characteristics of (a) through port; and (b) drop port; for TM polarization in the 100 μ m radius microring resonator.

Fig. 4
Fig. 4

Dependence of resonant wavelength shift for TM and TE polarizations on the applied voltage in the 100 μ m radius microring resonator.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ m V = l e o ( l o + l e o ) ( λ m n e f f ) ( 1 2 ) n 3 r Γ 1 Γ 2 G ,

Metrics