Abstract

We have experimentally demonstrated a high-power self-mode-locked Yb:Y2O3 ceramic laser. Without any additional active or passive element in the cavity, self-started cw mode-locking was achieved. The maximum output power was as high as 2.7W with a pulse duration of 1.1ps. Numerical studies show that the diffraction loss induced by thermal lens aberration, in combination with the Kerr self-focusing effect in the gain medium, results in the mode locking of the laser. To our knowledge, this is the first self-mode-locked ceramic laser.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, Annu. Rev. Mater. Res. 36, 397 (2006).
    [CrossRef]
  2. Y. Senatsky, A. Shirakawa, Y. Sato, J. Hagiwara, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, Laser Phys. Lett. 1, 500 (2004).
    [CrossRef]
  3. M. Tokurakawa, K. Takaichi, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, Appl. Phys. Lett. 90, 071101 (2007).
    [CrossRef]
  4. A. Shirakawa, K. Takaichi, H. Yagi, J-F. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. S. Petrov, and A. A. Kaminskii, Opt. Express 11, 2911 (2003).
    [CrossRef] [PubMed]
  5. J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, Opt. Lett. 29, 1212 (2004).
    [CrossRef] [PubMed]
  6. J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, Appl. Phys. Lett. 86, 161116 (2005).
    [CrossRef]
  7. S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, IEEE J. Quantum Electron. 28, 997 (1992).
    [CrossRef]
  8. K. X. Liu, C. J. Flood, D. R. Walker, and H. M. van Driel, Opt. Lett. 17, 1361 (1992).
    [CrossRef] [PubMed]
  9. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fieids, Appl. Phys. Lett. 56, 1831 (1990).
    [CrossRef]
  10. W. J. Xie, Y. Kwon, S. C. Tam, and Y. L. Lam, Opt. Laser Technol. 33, 129 (2001).
    [CrossRef]
  11. M. Piché, Opt. Commun. 86, 156 (1991).
    [CrossRef]
  12. G. Cerullo, S. Desilvestri, and V. Magni, Opt. Lett. 19, 1040 (1994).
    [CrossRef] [PubMed]

2007 (1)

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, Appl. Phys. Lett. 90, 071101 (2007).
[CrossRef]

2006 (1)

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, Annu. Rev. Mater. Res. 36, 397 (2006).
[CrossRef]

2005 (1)

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, Appl. Phys. Lett. 86, 161116 (2005).
[CrossRef]

2004 (2)

Y. Senatsky, A. Shirakawa, Y. Sato, J. Hagiwara, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, Laser Phys. Lett. 1, 500 (2004).
[CrossRef]

J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, Opt. Lett. 29, 1212 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

W. J. Xie, Y. Kwon, S. C. Tam, and Y. L. Lam, Opt. Laser Technol. 33, 129 (2001).
[CrossRef]

1994 (1)

1992 (2)

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, IEEE J. Quantum Electron. 28, 997 (1992).
[CrossRef]

K. X. Liu, C. J. Flood, D. R. Walker, and H. M. van Driel, Opt. Lett. 17, 1361 (1992).
[CrossRef] [PubMed]

1991 (1)

M. Piché, Opt. Commun. 86, 156 (1991).
[CrossRef]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fieids, Appl. Phys. Lett. 56, 1831 (1990).
[CrossRef]

Annu. Rev. Mater. Res. (1)

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, Annu. Rev. Mater. Res. 36, 397 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, Appl. Phys. Lett. 90, 071101 (2007).
[CrossRef]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, Appl. Phys. Lett. 86, 161116 (2005).
[CrossRef]

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fieids, Appl. Phys. Lett. 56, 1831 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, IEEE J. Quantum Electron. 28, 997 (1992).
[CrossRef]

Laser Phys. Lett. (1)

Y. Senatsky, A. Shirakawa, Y. Sato, J. Hagiwara, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, Laser Phys. Lett. 1, 500 (2004).
[CrossRef]

Opt. Commun. (1)

M. Piché, Opt. Commun. 86, 156 (1991).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

W. J. Xie, Y. Kwon, S. C. Tam, and Y. L. Lam, Opt. Laser Technol. 33, 129 (2001).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the self-mode-locked Yb : Y 2 O 3 ceramic laser. Radius of curvature (ROC). The tilting angle of M2 is set at 3 ° .

Fig. 2
Fig. 2

(a) Single-pass phase shift for the thermal lens and two different thin lenses. (b) Relationship between the round-trip diffraction loss in the ceramic and the laser mode size. The following parameters are used: thermal conductivity, 0.17 W cm K ; thermal expansion coefficient, 7.5 × 10 6 K 1 ; d n d T , 7.3 × 10 6 K 1 ; Poisson’s ratio, 0.28; ceramic rod radius, 1.5 mm ; pump beam waist radius, 175 μ m ; thermal load, 1.5 W .

Fig. 3
Fig. 3

(a) Autocorrelation trace of the mode-locked pulses: dotted line, experiment data; solid curve, Gaussian fit. (b) Corresponding pulse spectrum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f = w 2 4 n 2 I 0 L ,
L n l > π T r Δ ν 3 dB ln ( m i ) ,

Metrics