Abstract

We have demonstrated successful two-photon excitation fluorescence bioimaging using a high-power pulsed all-semiconductor laser. Toward this purpose, we developed a pulsed light source consisting of a mode-locked laser diode and a two-stage diode laser amplifier. This pulsed light source provided optical pulses of 5ps duration and having a maximum peak power of over 100 W at a wavelength of 800nm and a repetition frequency of 500MHz.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [Crossref] [PubMed]
  2. A. Zumbush, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
    [Crossref]
  3. L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, Biophys. J. 80, 1568 (2001).
    [Crossref] [PubMed]
  4. W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
    [Crossref] [PubMed]
  5. H. Yokoyama, H. C. Guo, T. Yoda, K. Takashima, K. Sato, H. Taniguchi, and H. Ito, Opt. Express 14, 3467 (2006).
    [Crossref] [PubMed]
  6. K. Taira, T. Hashimoto, and H. Yokoyama, Opt. Express 15, 2454 (2007).
    [Crossref] [PubMed]
  7. K. Kim, S. Lee, and P. Delfyett, Opt. Express 13, 4600 (2005).
    [Crossref] [PubMed]
  8. G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
    [Crossref]

2007 (1)

2006 (1)

2005 (1)

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[Crossref] [PubMed]

2001 (1)

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, Biophys. J. 80, 1568 (2001).
[Crossref] [PubMed]

1999 (1)

A. Zumbush, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[Crossref]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[Crossref] [PubMed]

1989 (1)

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[Crossref]

Blanchard-Desce, M.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, Biophys. J. 80, 1568 (2001).
[Crossref] [PubMed]

Charpak, S.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, Biophys. J. 80, 1568 (2001).
[Crossref] [PubMed]

Delfyett, P.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[Crossref] [PubMed]

Guo, H. C.

Hashimoto, T.

Holtom, G. R.

A. Zumbush, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[Crossref]

Ito, H.

Kim, K.

Lee, S.

Mertz, J.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, Biophys. J. 80, 1568 (2001).
[Crossref] [PubMed]

Moreaux, L.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, Biophys. J. 80, 1568 (2001).
[Crossref] [PubMed]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[Crossref]

Sandre, O.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, Biophys. J. 80, 1568 (2001).
[Crossref] [PubMed]

Sato, K.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[Crossref] [PubMed]

Taira, K.

Takashima, K.

Taniguchi, H.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[Crossref] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[Crossref] [PubMed]

Xie, X. S.

A. Zumbush, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[Crossref]

Yoda, T.

Yokoyama, H.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[Crossref] [PubMed]

Zumbush, A.

A. Zumbush, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[Crossref]

Biophys. J. (1)

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, Biophys. J. 80, 1568 (2001).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[Crossref]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. Lett. (1)

A. Zumbush, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[Crossref]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic configuration of the all semiconductor laser picosecond light pulse source. MLLD, mode-locked laser diode; BPF, bandpass filter; OI, optical isolator; SOA, semiconductor optical amplifier; lens, collimating/focusing lens.

Fig. 2
Fig. 2

(a) SHG autocorrelation trace of the amplified optical pulses showing a pulse width of 5.2 ps ( sech 2 pulse shape assumed). (b) Optical spectra of the mode-locked laser pulse and the amplified pulses showing a wavelength of 783 nm .

Fig. 3
Fig. 3

Photograph indicating bright two-photon excited fluorescence in a cell containing Coumarin 480 dye excited by 20 W peak-power light pulses. The peak optical power density of 1 MW cm 2 at the cell can be estimated by considering the optical systems with a 20 × expansion and near-field pattern of LD system.

Fig. 4
Fig. 4

Two-photon excited fluorescence image of glomeruli and convoluted tubules in mouse kidney tissues stained with Alexa Fluor 488. The incident average optical power was 98 mW ( 32 W peak power).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = k T τ P a v 2 .

Metrics