Abstract

We describe a method for generating single photons on demand by means of a modular array of spontaneous parametric downconverters that are mediated by electro-optic polarization controls. Our scheme allows easy addition of downconverter modules to improve single-photon generation performance while simultaneously further suppressing multiphoton events. We estimate that a single-photon generation probability of over 60% per pulse with a multiphoton probability of 1% is achievable with currently available technology. This on-demand source may significantly improve the performance of quantum key distribution, quantum communication, and quantum computation systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, 1984), p. 175.
    [PubMed]
  2. H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005).
    [CrossRef] [PubMed]
  3. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, Science 290, 2282 (2000).
    [CrossRef] [PubMed]
  4. B. Lounis and W. E. Moerner, Nature 407, 491 (2000).
    [CrossRef] [PubMed]
  5. C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, Phys. Rev. Lett. 92, 213601 (2004).
    [CrossRef] [PubMed]
  6. A. T. Black, J. K. Thompson, and V. Vuletic, Phys. Rev. Lett. 95, 133601 (2005).
    [CrossRef] [PubMed]
  7. A. L. Migdall, D. Branning, and S. Castelletto, Phys. Rev. A 66, 053805 (2002).
    [CrossRef]
  8. A. L. Migdall, S. Castelletto, and M. Ware, Proc. SPIE 5105, 294 (2003).
    [CrossRef]
  9. T. B. Pittman and J. D. Franson, Phys. Rev. A 66, 062302 (2002).
    [CrossRef]
  10. E. Jeffrey, N. A. Peters, and P. G. Kwiat, New J. Phys. 6, 100 (2004).
    [CrossRef]
  11. The propagation time from PBS1 to the EOM in Fig. is chosen to match the optical plus circuit delays in controlling the EOM's bias voltage.
  12. D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, Phys. Rev. A 71, 061903(R) (2005).
    [CrossRef]
  13. F. N. C. Wong, J. H. Shapiro, and T. Kim, Laser Phys. 16, 1517 (2006).
    [CrossRef]
  14. O. Kuzucu, F. N. C. Wong, D. E. Zelmon, S. M. Hegde, T. D. Roberts, and P. Battle, Opt. Lett. 32, 1290 (2007).
    [CrossRef] [PubMed]
  15. E. J. Mason, M. A. Albota, F. König, and F. N. C. Wong, Opt. Lett. 27, 2115 (2002).
    [CrossRef]

2007 (1)

2006 (1)

F. N. C. Wong, J. H. Shapiro, and T. Kim, Laser Phys. 16, 1517 (2006).
[CrossRef]

2005 (3)

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, Phys. Rev. A 71, 061903(R) (2005).
[CrossRef]

H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

A. T. Black, J. K. Thompson, and V. Vuletic, Phys. Rev. Lett. 95, 133601 (2005).
[CrossRef] [PubMed]

2004 (2)

C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, Phys. Rev. Lett. 92, 213601 (2004).
[CrossRef] [PubMed]

E. Jeffrey, N. A. Peters, and P. G. Kwiat, New J. Phys. 6, 100 (2004).
[CrossRef]

2003 (1)

A. L. Migdall, S. Castelletto, and M. Ware, Proc. SPIE 5105, 294 (2003).
[CrossRef]

2002 (3)

T. B. Pittman and J. D. Franson, Phys. Rev. A 66, 062302 (2002).
[CrossRef]

A. L. Migdall, D. Branning, and S. Castelletto, Phys. Rev. A 66, 053805 (2002).
[CrossRef]

E. J. Mason, M. A. Albota, F. König, and F. N. C. Wong, Opt. Lett. 27, 2115 (2002).
[CrossRef]

2000 (2)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, Science 290, 2282 (2000).
[CrossRef] [PubMed]

B. Lounis and W. E. Moerner, Nature 407, 491 (2000).
[CrossRef] [PubMed]

Laser Phys. (1)

F. N. C. Wong, J. H. Shapiro, and T. Kim, Laser Phys. 16, 1517 (2006).
[CrossRef]

Nature (1)

B. Lounis and W. E. Moerner, Nature 407, 491 (2000).
[CrossRef] [PubMed]

New J. Phys. (1)

E. Jeffrey, N. A. Peters, and P. G. Kwiat, New J. Phys. 6, 100 (2004).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (3)

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, Phys. Rev. A 71, 061903(R) (2005).
[CrossRef]

A. L. Migdall, D. Branning, and S. Castelletto, Phys. Rev. A 66, 053805 (2002).
[CrossRef]

T. B. Pittman and J. D. Franson, Phys. Rev. A 66, 062302 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, Phys. Rev. Lett. 92, 213601 (2004).
[CrossRef] [PubMed]

A. T. Black, J. K. Thompson, and V. Vuletic, Phys. Rev. Lett. 95, 133601 (2005).
[CrossRef] [PubMed]

H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. L. Migdall, S. Castelletto, and M. Ware, Proc. SPIE 5105, 294 (2003).
[CrossRef]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, Science 290, 2282 (2000).
[CrossRef] [PubMed]

Other (2)

C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, 1984), p. 175.
[PubMed]

The propagation time from PBS1 to the EOM in Fig. is chosen to match the optical plus circuit delays in controlling the EOM's bias voltage.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the two-downconverter module. See text for details.

Fig. 2
Fig. 2

Schematic of a K = 3 nested downconverter array using four basic modules. See text for details.

Fig. 3
Fig. 3

Plots of single-photon output probability (upper curves) and multiphoton probability (lower curves) versus the mean photon number N ¯ for K = 6 , 95% throughput efficiency per downconverter stage, 70% detector efficiency, and detectors that resolve (dashed curves) or do not resolve (solid curves) photon number.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Pr ( n ) = N ¯ n e N ¯ n ! , for n = 0 , 1 , 2 , ,
Pr ( 0 ) = e N ¯ 1 N ¯ ,
Pr ( 1 ) = N ¯ e N ¯ N ¯ ,
Pr ( > 1 ) = 1 Pr ( 0 ) Pr ( 1 ) N ¯ 2 2 .
Pr ( n trig ) = ( γ K N ¯ ) n e γ K N ¯ n ! 1 ( 1 η ) n e η ( 1 γ K ) N ¯ 1 e η N ¯ ,

Metrics