Abstract

The transmission of light through a thin Ag film with a periodic subwavelength hole array can be influenced by the presence of the externally applied magnetic field H. Using a three-dimensional finite element method, we show that the spectral locations of the transmission peak resonances can be shifted by varying the magnitude and direction of the H. The transmission peaks have blueshift, and the higher the magnitude of H the larger the blueshift. The shift is due to the change of cavity resonance condition as a result of the magneto-induced anisotropy in the optical properties of the Ag film. Hence, high transmittance for any desired wavelength can be achieved by applying an appropriate H to the metallic film of optimized material and hole parameters.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. A. Bethe, Phys. Rev. 66, 163 (1944).
    [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
    [CrossRef]
  3. C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
    [CrossRef] [PubMed]
  4. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett. 288, 243 (1998).
    [CrossRef]
  5. P. N. Prasad, Nanophotonics (Wiley, 2004).
    [CrossRef]
  6. A. Zvezdin and V. Kotov, Modern Magento-Optics and Magneto-Optical Materials (IOP, 1997).
  7. M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, Appl. Phys. Lett. 84, 3112 (2004).
    [CrossRef]
  8. V. I. Belotelov and A. K. Zvezdin, J. Magn. Magn. Mater. 300, e260 (2006).
    [CrossRef]
  9. Y. M. Strelniker and D. J. Bergman, Phys. Rev. B 59, R12763 (1999).
    [CrossRef]
  10. A. García-Martín, G. Armelles, and S. Pereira, Phys. Rev. B 71, 205116 (2005).
    [CrossRef]
  11. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, Phys. Rev. Lett. 98, 077401 (2007).
    [CrossRef] [PubMed]
  12. COMSOL 3.2a Reference Manual, version 3.2 ed. (Comsol AB, 2005).
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  14. D. J. Bergman and Y. M. Strelniker, Phys. Rev. Lett. 80, 857 (1998).
    [CrossRef]
  15. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, Opt. Express 12, 234 (2004).
    [CrossRef] [PubMed]
  16. W. Jia and X. Liu, Eur. Phys. J. B 46, 343 (2005).
    [CrossRef]
  17. S. Astilean, Ph. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).
    [CrossRef]
  18. G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368 (1955).
    [CrossRef]

2007

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef] [PubMed]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef] [PubMed]

2006

V. I. Belotelov and A. K. Zvezdin, J. Magn. Magn. Mater. 300, e260 (2006).
[CrossRef]

2005

A. García-Martín, G. Armelles, and S. Pereira, Phys. Rev. B 71, 205116 (2005).
[CrossRef]

W. Jia and X. Liu, Eur. Phys. J. B 46, 343 (2005).
[CrossRef]

2004

2000

S. Astilean, Ph. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).
[CrossRef]

1999

Y. M. Strelniker and D. J. Bergman, Phys. Rev. B 59, R12763 (1999).
[CrossRef]

1998

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett. 288, 243 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

D. J. Bergman and Y. M. Strelniker, Phys. Rev. Lett. 80, 857 (1998).
[CrossRef]

1955

G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368 (1955).
[CrossRef]

1944

H. A. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Appl. Phys. Lett.

M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, Appl. Phys. Lett. 84, 3112 (2004).
[CrossRef]

Chem. Phys. Lett.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett. 288, 243 (1998).
[CrossRef]

Eur. Phys. J. B

W. Jia and X. Liu, Eur. Phys. J. B 46, 343 (2005).
[CrossRef]

J. Magn. Magn. Mater.

V. I. Belotelov and A. K. Zvezdin, J. Magn. Magn. Mater. 300, e260 (2006).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef] [PubMed]

Opt. Commun.

S. Astilean, Ph. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).
[CrossRef]

Opt. Express

Phys. Rev.

G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368 (1955).
[CrossRef]

H. A. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Phys. Rev. B

Y. M. Strelniker and D. J. Bergman, Phys. Rev. B 59, R12763 (1999).
[CrossRef]

A. García-Martín, G. Armelles, and S. Pereira, Phys. Rev. B 71, 205116 (2005).
[CrossRef]

Phys. Rev. Lett.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef] [PubMed]

D. J. Bergman and Y. M. Strelniker, Phys. Rev. Lett. 80, 857 (1998).
[CrossRef]

Other

COMSOL 3.2a Reference Manual, version 3.2 ed. (Comsol AB, 2005).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

P. N. Prasad, Nanophotonics (Wiley, 2004).
[CrossRef]

A. Zvezdin and V. Kotov, Modern Magento-Optics and Magneto-Optical Materials (IOP, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of light incident on a thin Ag film perforated with square array of rectangular holes pair having d = 600 nm , t = 300 nm , w = 60 nm , l = 400 nm , s = 60 nm .

Fig. 2
Fig. 2

Transmission spectrum of a TM polarized light through a thin Ag film perforated with rectangular hole array having w = 60 nm (continuous curve with open circle), rectangular hole pair array having w = 60 nm and s = 60 nm (continuous curve) and rectangular hole array having w = 120 nm (dashed curve).

Fig. 3
Fig. 3

Transmission spectrum of a TM polarized light through a thin Ag film perforated with a rectangular hole pair array having w = 60 nm and s = 60 nm for magnetic field B o ( = H μ , where μ is Hall mobility) applied in the direction (a) parallel to the incident polarization, (b) and (c) perpendicular to the incident polarization but in-plane to the metal film, and (d) parallel to the propagation direction of the incident light.

Metrics