Abstract

A vertical slab waveguide design for an all-optical switch based on intersubband transitions in molecular beam epitaxy (MBE)-grown coupled double InGaAsAlAsSb quantum well (QW) structures is presented. We propose a waveguide with two surrounding high refractive index InGaAsP guiding layers, which confine the optical mode in the low refractive index QW region and thus enable light guiding with low contrast InP cladding layers. We investigate the proposed concept by means of 1D simulations of several waveguide configurations. We confirm its validity by fabricating deeply etched waveguiding structures using either wet- or dry-etching technologies. Optical losses as low as 13.5dBcm1 and 12.8dBcm1 were measured for TM- and TE-polarized light, respectively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. C. West and S. J. Eglash, Appl. Phys. Lett. 46, 1156 (1985).
    [CrossRef]
  2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
    [CrossRef] [PubMed]
  3. B. F. Levine, J. Appl. Phys. 74, R1 (1993).
    [CrossRef]
  4. S. Noda, T. Yamashita, M. Ohya, Y. Muromoto, and A. Sasaki, IEEE J. Quantum Electron. 29, 1640 (1993).
    [CrossRef]
  5. H. Yoshida, T. Mozume, A. Neogi, and O. Wada, Electron. Lett. 35, 1103 (1999).
    [CrossRef]
  6. P. Cristea, Y. Fedoryshyn, J. Holzman, F. Robin, H. Jäckel, E. Müller, and J. Faist, J. Appl. Phys. 100, 116104 (2006).
    [CrossRef]
  7. O. Wada, New J. Phys. 6, 183 (2004).
    [CrossRef]
  8. One-dimensional simulations were realized with the use of the software provided by Professor J. Faist from the University of Neuchatel, Switzerland.
  9. H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells (Academic, 2000), Chap. 1.
  10. M. A. Afromowitz, Solid State Commun. 15, 59 (1974).
    [CrossRef]
  11. The following growth rates were determined by HR-XRD: 5 nm/min In0.53Ga0.47As, 7.35 nm/min AlAs0.56Sb0.44, 5.05 nm/min In0.78Ga0.22As0.45P0.55, and 3.5 nm/min InP.
  12. P. Cristea, Y. Fedoryshyn, and H. Jäckel, J. Cryst. Growth 278, 544 (2005).
    [CrossRef]
  13. P. Strasser, R. Wüest, F. Robin, D. Erni, and H. Jäckel, J. Vac. Sci. Technol. B 25, 387 (2007).
    [CrossRef]
  14. D. G. Revin, L. R. Wilson, D. A. Carder, J. W. Cockburn, M. J. Steer, M. Hopkinson, R. J. Airey, M. Garcia, C. Sirtori, Y. Rouillard, D. Barate, and A. Vicet, J. Appl. Phys. 95, 7584 (2004).
    [CrossRef]

2007 (1)

P. Strasser, R. Wüest, F. Robin, D. Erni, and H. Jäckel, J. Vac. Sci. Technol. B 25, 387 (2007).
[CrossRef]

2006 (1)

P. Cristea, Y. Fedoryshyn, J. Holzman, F. Robin, H. Jäckel, E. Müller, and J. Faist, J. Appl. Phys. 100, 116104 (2006).
[CrossRef]

2005 (1)

P. Cristea, Y. Fedoryshyn, and H. Jäckel, J. Cryst. Growth 278, 544 (2005).
[CrossRef]

2004 (2)

O. Wada, New J. Phys. 6, 183 (2004).
[CrossRef]

D. G. Revin, L. R. Wilson, D. A. Carder, J. W. Cockburn, M. J. Steer, M. Hopkinson, R. J. Airey, M. Garcia, C. Sirtori, Y. Rouillard, D. Barate, and A. Vicet, J. Appl. Phys. 95, 7584 (2004).
[CrossRef]

1999 (1)

H. Yoshida, T. Mozume, A. Neogi, and O. Wada, Electron. Lett. 35, 1103 (1999).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

1993 (2)

B. F. Levine, J. Appl. Phys. 74, R1 (1993).
[CrossRef]

S. Noda, T. Yamashita, M. Ohya, Y. Muromoto, and A. Sasaki, IEEE J. Quantum Electron. 29, 1640 (1993).
[CrossRef]

1985 (1)

L. C. West and S. J. Eglash, Appl. Phys. Lett. 46, 1156 (1985).
[CrossRef]

1974 (1)

M. A. Afromowitz, Solid State Commun. 15, 59 (1974).
[CrossRef]

Appl. Phys. Lett. (1)

L. C. West and S. J. Eglash, Appl. Phys. Lett. 46, 1156 (1985).
[CrossRef]

Electron. Lett. (1)

H. Yoshida, T. Mozume, A. Neogi, and O. Wada, Electron. Lett. 35, 1103 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Noda, T. Yamashita, M. Ohya, Y. Muromoto, and A. Sasaki, IEEE J. Quantum Electron. 29, 1640 (1993).
[CrossRef]

J. Appl. Phys. (3)

B. F. Levine, J. Appl. Phys. 74, R1 (1993).
[CrossRef]

P. Cristea, Y. Fedoryshyn, J. Holzman, F. Robin, H. Jäckel, E. Müller, and J. Faist, J. Appl. Phys. 100, 116104 (2006).
[CrossRef]

D. G. Revin, L. R. Wilson, D. A. Carder, J. W. Cockburn, M. J. Steer, M. Hopkinson, R. J. Airey, M. Garcia, C. Sirtori, Y. Rouillard, D. Barate, and A. Vicet, J. Appl. Phys. 95, 7584 (2004).
[CrossRef]

J. Cryst. Growth (1)

P. Cristea, Y. Fedoryshyn, and H. Jäckel, J. Cryst. Growth 278, 544 (2005).
[CrossRef]

J. Vac. Sci. Technol. B (1)

P. Strasser, R. Wüest, F. Robin, D. Erni, and H. Jäckel, J. Vac. Sci. Technol. B 25, 387 (2007).
[CrossRef]

New J. Phys. (1)

O. Wada, New J. Phys. 6, 183 (2004).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

Solid State Commun. (1)

M. A. Afromowitz, Solid State Commun. 15, 59 (1974).
[CrossRef]

Other (3)

The following growth rates were determined by HR-XRD: 5 nm/min In0.53Ga0.47As, 7.35 nm/min AlAs0.56Sb0.44, 5.05 nm/min In0.78Ga0.22As0.45P0.55, and 3.5 nm/min InP.

One-dimensional simulations were realized with the use of the software provided by Professor J. Faist from the University of Neuchatel, Switzerland.

H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells (Academic, 2000), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dependence of the optical mode overlap with CDQWs on the thickness of upper and lower InGaAsP guiding layers in structures with 500 nm thick InP cap layers and (a) 490 nm , (b) 735 nm , and (c) 980 nm thick core regions.

Fig. 2
Fig. 2

TM-mode profile in the optimized waveguide design.

Fig. 3
Fig. 3

SEM images of trench waveguides process by dry etching: (a) cross section and (b) top view showing crack formation due to residual strain, (c) cross section of the wet-etched ridge waveguide. The core layers are slightly visible in the cross-sectional views as a faint bright stripe.

Metrics