Abstract

A novel fiber-optic in-line etalon formed by splicing a section of hollow-core photonic crystal fiber (HCPCF) in between two single-mode fibers is proposed and demonstrated, for the first time to our knowledge. Such a HCPCF-based etalon acts as an excellent optical waveguide to form a Fabry–Perot interferometer and hence allows the cavity length to be as long as several centimeters with good visibility as the transmission loss of the HCPCF is much smaller than that of a hollow core fiber; this offers great potential to generate a practical dense fiber-optic sensor network with spatial frequency division-multiplexing. This novel etalon is demonstrated for strain measurement, and the experimental results show that a good visibility of 0.3 and a strain accuracy of better than ±5με are achieved.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. A. Jackson, J. Phys. E 18, 981 (1985).
    [CrossRef]
  2. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, Opt. Lett. 18, 1973 (1993).
    [CrossRef] [PubMed]
  3. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 581 (1996).
    [CrossRef]
  4. H. F. Taylor, in Fiber Optic Sensors, F. T. Y. Yu, ed. (Marcel Dekker, 2002), p. 41.
  5. Y. J. Rao, Meas. Sci. Technol. 7, 981 (1996).
    [CrossRef]
  6. B. Yu, D. Kim, J. Deng, H. Xiao, and A. Wang, Appl. Opt. 42, 3241 (2003).
    [CrossRef] [PubMed]
  7. Y. J. Rao, C. X. Zhou, and T. Zhu, IEEE Photon. Technol. Lett. 17, 1259 (2005).
    [CrossRef]
  8. Y. J. Rao, Opt. Fiber Technol. 12, 227 (2006).
    [CrossRef]
  9. Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
    [CrossRef]

2006 (1)

Y. J. Rao, Opt. Fiber Technol. 12, 227 (2006).
[CrossRef]

2005 (1)

Y. J. Rao, C. X. Zhou, and T. Zhu, IEEE Photon. Technol. Lett. 17, 1259 (2005).
[CrossRef]

2003 (1)

1996 (2)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 581 (1996).
[CrossRef]

Y. J. Rao, Meas. Sci. Technol. 7, 981 (1996).
[CrossRef]

1994 (1)

Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
[CrossRef]

1993 (1)

1985 (1)

D. A. Jackson, J. Phys. E 18, 981 (1985).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

Y. J. Rao, C. X. Zhou, and T. Zhu, IEEE Photon. Technol. Lett. 17, 1259 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
[CrossRef]

J. Phys. E (1)

D. A. Jackson, J. Phys. E 18, 981 (1985).
[CrossRef]

Meas. Sci. Technol. (2)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 581 (1996).
[CrossRef]

Y. J. Rao, Meas. Sci. Technol. 7, 981 (1996).
[CrossRef]

Opt. Fiber Technol. (1)

Y. J. Rao, Opt. Fiber Technol. 12, 227 (2006).
[CrossRef]

Opt. Lett. (1)

Other (1)

H. F. Taylor, in Fiber Optic Sensors, F. T. Y. Yu, ed. (Marcel Dekker, 2002), p. 41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Configuration of an in-line HCPCF etalon.

Fig. 2
Fig. 2

Photograph of a HCPCF etalon.

Fig. 3
Fig. 3

Reflective signals from a HCPCH etalon: (a) without reflective film, (b) with reflective film.

Fig. 4
Fig. 4

Schematic diagram of the experimental setup.

Fig. 5
Fig. 5

(a) Strain response of the HCPCF etalon. (b) Strain accuracy of the HCPCF etalon. (c) Comparison between measured strain and electrical strain gauge.

Fig. 6
Fig. 6

Temperature response of the HCPCF etalon.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V = ( β R 1 ) 1 2 ( R 1 + β ) ,

Metrics