Abstract

Cn2 profile monitoring usually relies on the exploitation of wavefront slope correlations or of scintillation pattern correlations. Scintillation is rather sensitive to high turbulence layers whereas wavefront slope correlations are mainly due to layers close to the receiving plane. Wavefront slope and scintillation correlations are therefore complementary. A Shack–Hartmann wavefront sensor (SHWFS) is currently used to measure wavefront slopes only. But it could also be sensitive to scintillation as the average intensity in a given subaperture can be obtained by adding pixel intensities in the subaperture focal plane up. With slopes and scintillation being recorded simultaneously, their correlation is also theoretically available. We propose to exploit wavefront slope and scintillation correlations recorded with a SHWFS to retrieve the Cn2 profile. Two measurement methods are exposed. In CO-SLIDAR (Coupled SLODAR SCIDAR), correlations of SHWFS data recorded on two separated stars are exploited. SCO-SLIDAR (Single CO-SLIDAR) relies on the same principle as CO-SLIDAR, but SHWFS data are recorded on a single star. Results of Cn2 estimation from simulated SHWFS data are presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription