Abstract

A method is presented for the first time to our knowledge for generating multiple-channel polarization-entangled photon pairs simultaneously based on type II quasi-phase-matched spontaneous parametric downconversion pumped by monochromatic light in a single periodically poled lithium niobate (PPLN) crystal. The expression for the count of the polarization-entangled photon pairs is analytically obtained. It is predicted that one-, two-, and even three-channel polarization-entangled photon pairs can be simultaneously generated just by suitably choosing the PPLN grating period and the pump frequency.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, and A. Zeilinger, Nature 390, 575 (1997).
    [CrossRef]
  2. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
    [CrossRef] [PubMed]
  3. C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).
    [CrossRef] [PubMed]
  4. J. C. Howell and J. A. Yeazell, Phys. Rev. Lett. 85, 198 (2000).
    [CrossRef] [PubMed]
  5. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef] [PubMed]
  6. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999).
    [CrossRef]
  7. M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, Opt. Express 12, 3573 (2004).
    [CrossRef] [PubMed]
  8. A. Yoshizawa and H. Tsuchida, Appl. Phys. Lett. 85, 2457 (2004).
    [CrossRef]
  9. T. Nosaka, B. K. Das, M. Fujimura, and T. Suhara, IEEE Photon. Technol. Lett. 18, 124 (2006).
    [CrossRef]
  10. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shaprio, Phys. Rev. A 69, 013807 (2004).
    [CrossRef]

2006

T. Nosaka, B. K. Das, M. Fujimura, and T. Suhara, IEEE Photon. Technol. Lett. 18, 124 (2006).
[CrossRef]

2005

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

2004

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shaprio, Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, Opt. Express 12, 3573 (2004).
[CrossRef] [PubMed]

A. Yoshizawa and H. Tsuchida, Appl. Phys. Lett. 85, 2457 (2004).
[CrossRef]

2000

J. C. Howell and J. A. Yeazell, Phys. Rev. Lett. 85, 198 (2000).
[CrossRef] [PubMed]

1999

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999).
[CrossRef]

1997

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, and A. Zeilinger, Nature 390, 575 (1997).
[CrossRef]

1992

C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).
[CrossRef] [PubMed]

1991

A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Yoshizawa and H. Tsuchida, Appl. Phys. Lett. 85, 2457 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Nosaka, B. K. Das, M. Fujimura, and T. Suhara, IEEE Photon. Technol. Lett. 18, 124 (2006).
[CrossRef]

Nature

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, and A. Zeilinger, Nature 390, 575 (1997).
[CrossRef]

Opt. Express

Phys. Rev. A

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shaprio, Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Phys. Rev. Lett.

A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).
[CrossRef] [PubMed]

J. C. Howell and J. A. Yeazell, Phys. Rev. Lett. 85, 198 (2000).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic description of multiple-channel polarization-entangled photon pair generation by type II SPDC in a PPLN crystal.

Fig. 2
Fig. 2

Phase-matched photon frequencies in the transparency frequency region of lithium niobate, from 50 to 600 THz , versus the PPLN QPM grating period, where the pump light is fixed at 555.55 THz .

Fig. 3
Fig. 3

Channel number of the entangled photon pairs as a function of the PPLN QPM grating period and the pump frequency within the transparent window of lithium niobate. Inset, partly enlarged illustration within the pump frequency window from 500 to 600 THz .

Fig. 4
Fig. 4

Generation of multiple-channel polarization-entangled photon pairs in a PPLN crystal with a grating period of 4.35 μ m . (a) One-channel degenerate entangled photon pairs ( f p = 549.66 THz ) ; (b) one-channel nondegenerate entangled photon pairs ( f p = 555.55 THz ) ; (c) two-channel nondegenerate entangled photon pairs ( f p = 535.71 THz ) ; (d) three-channel nondegenerate entangled photon pairs ( f p = 540.54 THz ) .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d E s , i d x = j 2 π d eff f s , i c n s , i o , e E p E i , s * exp ( j Δ k x ) ,
Δ k = ( 2 π c ) ( n p o f p n s o f s n i e f i ) 2 π Λ ,
d N d x = κ N sin θ , d θ d x = Δ k κ cos θ ,
N ( L ) = { N 0 ( Δ k = κ ) N 0 Δ k 2 κ 2 [ Δ k 2 κ 2 cosh ( L κ 2 Δ k 2 ) ] [ κ κ 2 Δ k 2 sinh ( L κ 2 Δ k 2 ) ] ( Δ k κ ) } .

Metrics