Abstract

A Yb-doped silica microcavity laser on a silicon chip is fabricated from a solgel thin film. The high-Q microtoroid cavity, which has a finesse of 10,000, is evanescently coupled to an optical fiber taper. We report a threshold of 1.8μW absorbed power that is, to the best of our knowledge, the lowest published threshold to date for any Yb-doped laser. The effect of Yb3+ concentration on laser threshold is experimentally quantified.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. P. Ostby, J. M. Fukumoto, R. D. Stultz, S. Matthews, and D. Filgas, Proc. SPIE 5707, 72 (2005).
    [CrossRef]
  2. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, Opt. Lett. 16, 1089 (1991).
    [CrossRef] [PubMed]
  3. A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, Electron. Lett. 31, 969 (1995).
    [CrossRef]
  4. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  5. L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 86, 091114 (2005).
    [CrossRef]
  6. L. L. Hench, and J. K. West, Chem. Rev. (Washington, D.C.) 90, 33 (1990).
  7. C. Y. Li, J. Chisham, M. Andrews, S. I. Najafi, J. D. Mackenzie, and N. Peyghambarian, Electron. Lett. 31, 271 (1995).
    [CrossRef]
  8. J. E. Meegan, A. Aggeli, N. Boden, R. Brydson, A. P. Brown, L. Carrick, A. R. Brough, A. Hussain, and R. J. Ansell, Adv. Funct. Mater. 14, 31 (2004).
    [CrossRef]
  9. X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, Opt. Mater. 12, 1 (1999).
    [CrossRef]
  10. U. Pedrazza, V. Romano, and W. Luthy, Opt. Mater. 29, 905 (2007).
    [CrossRef]
  11. A. S. Holmes, R. R. A. Syms, M. Li, and M. Green, Appl. Opt. 32, 4916 (1993).
    [CrossRef] [PubMed]
  12. G. Brusatin, M. Guglielmi, P. Innocenzi, A. Martucci, C. Battaglin, S. Pelli, and G. Righini, J. Non-Cryst. Solids 220, 202 (1997).
    [CrossRef]
  13. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef] [PubMed]
  14. M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
    [CrossRef] [PubMed]
  15. B. K. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, Phys. Rev. A 70, 033803 (2004).
    [CrossRef]
  16. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
    [CrossRef]
  17. L. Yang and K. J. Vahala, Opt. Lett. 28, 592 (2003).
    [CrossRef] [PubMed]
  18. G. M. Hale and M. R. Querry, Appl. Opt. 12, 555 (1973).
    [CrossRef] [PubMed]
  19. Y. Zhou, Q. Thai, Y. C. Chen, and S. H. Zhou, Opt. Commun. 219, 365 (2003).
    [CrossRef]
  20. M. Zeller, H. G. Limberger, and T. Lasser, IEEE Photon. Technol. Lett. 15, 194 (2003).
    [CrossRef]

2007 (1)

U. Pedrazza, V. Romano, and W. Luthy, Opt. Mater. 29, 905 (2007).
[CrossRef]

2005 (2)

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 86, 091114 (2005).
[CrossRef]

E. P. Ostby, J. M. Fukumoto, R. D. Stultz, S. Matthews, and D. Filgas, Proc. SPIE 5707, 72 (2005).
[CrossRef]

2004 (2)

B. K. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, Phys. Rev. A 70, 033803 (2004).
[CrossRef]

J. E. Meegan, A. Aggeli, N. Boden, R. Brydson, A. P. Brown, L. Carrick, A. R. Brough, A. Hussain, and R. J. Ansell, Adv. Funct. Mater. 14, 31 (2004).
[CrossRef]

2003 (5)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Y. Zhou, Q. Thai, Y. C. Chen, and S. H. Zhou, Opt. Commun. 219, 365 (2003).
[CrossRef]

M. Zeller, H. G. Limberger, and T. Lasser, IEEE Photon. Technol. Lett. 15, 194 (2003).
[CrossRef]

L. Yang and K. J. Vahala, Opt. Lett. 28, 592 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

1999 (1)

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, Opt. Mater. 12, 1 (1999).
[CrossRef]

1997 (1)

G. Brusatin, M. Guglielmi, P. Innocenzi, A. Martucci, C. Battaglin, S. Pelli, and G. Righini, J. Non-Cryst. Solids 220, 202 (1997).
[CrossRef]

1995 (2)

A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, Electron. Lett. 31, 969 (1995).
[CrossRef]

C. Y. Li, J. Chisham, M. Andrews, S. I. Najafi, J. D. Mackenzie, and N. Peyghambarian, Electron. Lett. 31, 271 (1995).
[CrossRef]

1993 (1)

1991 (1)

1990 (1)

L. L. Hench, and J. K. West, Chem. Rev. (Washington, D.C.) 90, 33 (1990).

1973 (1)

Adv. Funct. Mater. (1)

J. E. Meegan, A. Aggeli, N. Boden, R. Brydson, A. P. Brown, L. Carrick, A. R. Brough, A. Hussain, and R. J. Ansell, Adv. Funct. Mater. 14, 31 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 86, 091114 (2005).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

L. L. Hench, and J. K. West, Chem. Rev. (Washington, D.C.) 90, 33 (1990).

Electron. Lett. (2)

C. Y. Li, J. Chisham, M. Andrews, S. I. Najafi, J. D. Mackenzie, and N. Peyghambarian, Electron. Lett. 31, 271 (1995).
[CrossRef]

A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, Electron. Lett. 31, 969 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Zeller, H. G. Limberger, and T. Lasser, IEEE Photon. Technol. Lett. 15, 194 (2003).
[CrossRef]

J. Non-Cryst. Solids (1)

G. Brusatin, M. Guglielmi, P. Innocenzi, A. Martucci, C. Battaglin, S. Pelli, and G. Righini, J. Non-Cryst. Solids 220, 202 (1997).
[CrossRef]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Zhou, Q. Thai, Y. C. Chen, and S. H. Zhou, Opt. Commun. 219, 365 (2003).
[CrossRef]

Opt. Lett. (3)

Opt. Mater. (2)

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, Opt. Mater. 12, 1 (1999).
[CrossRef]

U. Pedrazza, V. Romano, and W. Luthy, Opt. Mater. 29, 905 (2007).
[CrossRef]

Phys. Rev. A (1)

B. K. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, Phys. Rev. A 70, 033803 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

Proc. SPIE (1)

E. P. Ostby, J. M. Fukumoto, R. D. Stultz, S. Matthews, and D. Filgas, Proc. SPIE 5707, 72 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Top-view photograph of testing setup showing evanescent coupling of fiber taper to Yb 3 + : Si O 2 microcavity.

Fig. 2
Fig. 2

Measured laser threshold (absorbed power) as a function of Yb 3 + concentration for Yb-doped silica microcavity.

Fig. 3
Fig. 3

Measured laser output power as a function of absorbed pump power for two 40 μ m diameter Yb 3 + : Si O 2 microtoroid lasers.

Fig. 4
Fig. 4

Measured laser output spectra of single-frequency Yb 3 + : Si O 2 microtoroid laser.

Metrics